Spaces:
Running
Running
Handled the None and empty string cases
Browse files
semf1.py
CHANGED
@@ -27,7 +27,7 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
27 |
|
28 |
from .encoder_models import get_encoder
|
29 |
from .type_aliases import DEVICE_TYPE, PREDICTION_TYPE, REFERENCE_TYPE
|
30 |
-
from .utils import is_nested_list_of_type, Scores, slice_embeddings, flatten_list, get_gpu
|
31 |
|
32 |
_CITATION = """\
|
33 |
@inproceedings{bansal-etal-2022-sem,
|
@@ -223,22 +223,33 @@ def _validate_input_format(
|
|
223 |
"""
|
224 |
|
225 |
if len(predictions) != len(references):
|
226 |
-
raise ValueError("Predictions and references must have the same length."
|
|
|
227 |
|
228 |
def is_list_of_strings_at_depth(lst_obj, depth: int):
|
229 |
return is_nested_list_of_type(lst_obj, element_type=str, depth=depth)
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
|
244 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
@@ -317,8 +328,6 @@ class SemF1(evaluate.Metric):
|
|
317 |
"""Optional: download external resources useful to compute the scores"""
|
318 |
import nltk
|
319 |
nltk.download("punkt", quiet=True)
|
320 |
-
# if not nltk.data.find("tokenizers/punkt"): # TODO: check why it is not working
|
321 |
-
# pass
|
322 |
|
323 |
def _compute(
|
324 |
self,
|
@@ -377,8 +386,8 @@ class SemF1(evaluate.Metric):
|
|
377 |
|
378 |
# Tokenize sentences if required
|
379 |
if tokenize_sentences:
|
380 |
-
predictions = [
|
381 |
-
references = [[
|
382 |
|
383 |
# Flatten the data for batch processing
|
384 |
all_sentences = flatten_list(predictions) + flatten_list(references)
|
|
|
27 |
|
28 |
from .encoder_models import get_encoder
|
29 |
from .type_aliases import DEVICE_TYPE, PREDICTION_TYPE, REFERENCE_TYPE
|
30 |
+
from .utils import is_nested_list_of_type, Scores, slice_embeddings, flatten_list, get_gpu, sent_tokenize
|
31 |
|
32 |
_CITATION = """\
|
33 |
@inproceedings{bansal-etal-2022-sem,
|
|
|
223 |
"""
|
224 |
|
225 |
if len(predictions) != len(references):
|
226 |
+
raise ValueError(f"Predictions and references must have the same length. "
|
227 |
+
f"Got {len(predictions)} predictions and {len(references)} references.")
|
228 |
|
229 |
def is_list_of_strings_at_depth(lst_obj, depth: int):
|
230 |
return is_nested_list_of_type(lst_obj, element_type=str, depth=depth)
|
231 |
|
232 |
+
def check_format(lst_obj, expected_depth: int, name: str):
|
233 |
+
is_valid, error_message = is_list_of_strings_at_depth(lst_obj, expected_depth)
|
234 |
+
if not is_valid:
|
235 |
+
raise ValueError(f"{name} are not in the expected format.\n"
|
236 |
+
f"Error: {error_message}.")
|
237 |
+
|
238 |
+
try:
|
239 |
+
if tokenize_sentences and multi_references:
|
240 |
+
check_format(predictions, 1, "Predictions")
|
241 |
+
check_format(references, 2, "References")
|
242 |
+
elif not tokenize_sentences and multi_references:
|
243 |
+
check_format(predictions, 2, "Predictions")
|
244 |
+
check_format(references, 3, "References")
|
245 |
+
elif tokenize_sentences and not multi_references:
|
246 |
+
check_format(predictions, 1, "Predictions")
|
247 |
+
check_format(references, 1, "References")
|
248 |
+
else:
|
249 |
+
check_format(predictions, 2, "Predictions")
|
250 |
+
check_format(references, 2, "References")
|
251 |
+
except ValueError as ve:
|
252 |
+
raise ValueError(f"Input validation error: {ve}")
|
253 |
|
254 |
|
255 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
|
328 |
"""Optional: download external resources useful to compute the scores"""
|
329 |
import nltk
|
330 |
nltk.download("punkt", quiet=True)
|
|
|
|
|
331 |
|
332 |
def _compute(
|
333 |
self,
|
|
|
386 |
|
387 |
# Tokenize sentences if required
|
388 |
if tokenize_sentences:
|
389 |
+
predictions = [sent_tokenize(pred) for pred in predictions]
|
390 |
+
references = [[sent_tokenize(ref) for ref in refs] for refs in references]
|
391 |
|
392 |
# Flatten the data for batch processing
|
393 |
all_sentences = flatten_list(predictions) + flatten_list(references)
|
tests.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import statistics
|
2 |
import unittest
|
3 |
-
from unittest.mock import patch, MagicMock
|
4 |
|
5 |
import numpy as np
|
6 |
import torch
|
@@ -73,29 +72,36 @@ class TestUtils(unittest.TestCase):
|
|
73 |
|
74 |
def test_is_nested_list_of_type(self):
|
75 |
# Test case: Depth 0, single element matching element_type
|
76 |
-
self.
|
77 |
|
78 |
# Test case: Depth 0, single element not matching element_type
|
79 |
-
|
|
|
80 |
|
81 |
# Test case: Depth 1, list of elements matching element_type
|
82 |
-
self.
|
83 |
|
84 |
# Test case: Depth 1, list of elements not matching element_type
|
85 |
-
|
|
|
86 |
|
87 |
# Test case: Depth 0 (Wrong), list of elements matching element_type
|
88 |
-
|
|
|
89 |
|
90 |
# Depth 2
|
91 |
-
self.
|
92 |
-
self.
|
93 |
-
|
|
|
|
|
94 |
|
95 |
# Depth 3
|
96 |
-
|
97 |
-
self.
|
|
|
98 |
|
|
|
99 |
with self.assertRaises(ValueError):
|
100 |
is_nested_list_of_type([1, 2], int, -1)
|
101 |
|
@@ -335,6 +341,93 @@ class TestSemF1(unittest.TestCase):
|
|
335 |
self.assertAlmostEqual(score.precision, 0.73, places=2)
|
336 |
self.assertAlmostEqual(score.recall[0], 0.63, places=2)
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
class TestCosineSimilarity(unittest.TestCase):
|
340 |
|
@@ -509,4 +602,3 @@ class TestValidateInputFormat(unittest.TestCase):
|
|
509 |
|
510 |
if __name__ == '__main__':
|
511 |
unittest.main(verbosity=2)
|
512 |
-
|
|
|
1 |
import statistics
|
2 |
import unittest
|
|
|
3 |
|
4 |
import numpy as np
|
5 |
import torch
|
|
|
72 |
|
73 |
def test_is_nested_list_of_type(self):
|
74 |
# Test case: Depth 0, single element matching element_type
|
75 |
+
self.assertEqual(is_nested_list_of_type("test", str, 0), (True, ""))
|
76 |
|
77 |
# Test case: Depth 0, single element not matching element_type
|
78 |
+
is_valid, err_msg = is_nested_list_of_type("test", int, 0)
|
79 |
+
self.assertEqual(is_valid, False)
|
80 |
|
81 |
# Test case: Depth 1, list of elements matching element_type
|
82 |
+
self.assertEqual(is_nested_list_of_type(["apple", "banana"], str, 1), (True, ""))
|
83 |
|
84 |
# Test case: Depth 1, list of elements not matching element_type
|
85 |
+
is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 1)
|
86 |
+
self.assertEqual(is_valid, False)
|
87 |
|
88 |
# Test case: Depth 0 (Wrong), list of elements matching element_type
|
89 |
+
is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 0)
|
90 |
+
self.assertEqual(is_valid, False)
|
91 |
|
92 |
# Depth 2
|
93 |
+
self.assertEqual(is_nested_list_of_type([[1, 2], [3, 4]], int, 2), (True, ""))
|
94 |
+
self.assertEqual(is_nested_list_of_type([['1', '2'], ['3', '4']], str, 2), (True, ""))
|
95 |
+
is_valid, err_msg = is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2)
|
96 |
+
self.assertEqual(is_valid, False)
|
97 |
+
|
98 |
|
99 |
# Depth 3
|
100 |
+
is_valid, err_msg = is_nested_list_of_type([[[1], [2]], [[3], [4]]], list, 3)
|
101 |
+
self.assertEqual(is_valid, False)
|
102 |
+
self.assertEqual(is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3), (True, ""))
|
103 |
|
104 |
+
# Test case: Depth is negative, expecting ValueError
|
105 |
with self.assertRaises(ValueError):
|
106 |
is_nested_list_of_type([1, 2], int, -1)
|
107 |
|
|
|
341 |
self.assertAlmostEqual(score.precision, 0.73, places=2)
|
342 |
self.assertAlmostEqual(score.recall[0], 0.63, places=2)
|
343 |
|
344 |
+
def test_none_input(self):
|
345 |
+
def _call_metric(preds, refs, tok, mul_ref):
|
346 |
+
with self.assertRaises(ValueError) as ctx:
|
347 |
+
_ = self.semf1_metric.compute(
|
348 |
+
predictions=preds,
|
349 |
+
references=refs,
|
350 |
+
tokenize_sentences=tok,
|
351 |
+
multi_references=mul_ref,
|
352 |
+
gpu=False,
|
353 |
+
batch_size=32,
|
354 |
+
verbose=False,
|
355 |
+
model_type="use",
|
356 |
+
)
|
357 |
+
print(f"Raised ValueError with message: {ctx.exception}")
|
358 |
+
return ""
|
359 |
+
|
360 |
+
# # Case 1: tokenize_sentences = True, multi_references = True
|
361 |
+
tokenize_sentences = True
|
362 |
+
multi_references = True
|
363 |
+
predictions = [
|
364 |
+
"I go to School. You are stupid.",
|
365 |
+
"I go to School. You are stupid.",
|
366 |
+
]
|
367 |
+
references = [
|
368 |
+
["I am", "I am"],
|
369 |
+
[None, "I am"],
|
370 |
+
]
|
371 |
+
print(f"Case I\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")
|
372 |
+
|
373 |
+
# Case 2: tokenize_sentences = False, multi_references = True
|
374 |
+
tokenize_sentences = False
|
375 |
+
multi_references = True
|
376 |
+
predictions = [
|
377 |
+
["I go to School.", "You are stupid."],
|
378 |
+
["I go to School.", "You are stupid."],
|
379 |
+
]
|
380 |
+
references = [
|
381 |
+
[["I am", "I am"], [None, "I am"]],
|
382 |
+
[[None, "I am"]],
|
383 |
+
]
|
384 |
+
print(f"Case II\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")
|
385 |
+
|
386 |
+
# Case 3: tokenize_sentences = True, multi_references = False
|
387 |
+
tokenize_sentences = True
|
388 |
+
multi_references = False
|
389 |
+
predictions = [
|
390 |
+
None,
|
391 |
+
"I go to School. You are stupid.",
|
392 |
+
]
|
393 |
+
references = [
|
394 |
+
"I am. I am.",
|
395 |
+
"I am. I am.",
|
396 |
+
]
|
397 |
+
print(f"Case III\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")
|
398 |
+
|
399 |
+
# Case 4: tokenize_sentences = False, multi_references = False
|
400 |
+
# This is taken care by the library itself
|
401 |
+
tokenize_sentences = False
|
402 |
+
multi_references = False
|
403 |
+
predictions = [
|
404 |
+
["I go to School.", None],
|
405 |
+
["I go to School.", "You are stupid."],
|
406 |
+
]
|
407 |
+
references = [
|
408 |
+
["I am.", "I am."],
|
409 |
+
["I am.", "I am."],
|
410 |
+
]
|
411 |
+
print(f"Case IV\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")
|
412 |
+
|
413 |
+
def test_empty_input(self):
|
414 |
+
predictions = [""]
|
415 |
+
references = ["I go to School. You are stupid."]
|
416 |
+
scores = self.semf1_metric.compute(
|
417 |
+
predictions=predictions,
|
418 |
+
references=references,
|
419 |
+
)
|
420 |
+
print(scores)
|
421 |
+
|
422 |
+
# # Test with Gibberish Cases
|
423 |
+
# predictions = ["lth cgezawrxretxdr", "dsfgsdfhsdfh"]
|
424 |
+
# references = ["dzfgzeWfnAfse", "dtjsrtzerZJSEWr"]
|
425 |
+
# scores = self.semf1_metric.compute(
|
426 |
+
# predictions=predictions,
|
427 |
+
# references=references,
|
428 |
+
# )
|
429 |
+
# print(scores)
|
430 |
+
|
431 |
|
432 |
class TestCosineSimilarity(unittest.TestCase):
|
433 |
|
|
|
602 |
|
603 |
if __name__ == '__main__':
|
604 |
unittest.main(verbosity=2)
|
|
utils.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import statistics
|
|
|
2 |
import sys
|
3 |
from dataclasses import dataclass, field
|
4 |
-
from typing import List, Union
|
5 |
|
|
|
6 |
import torch
|
7 |
from numpy.typing import NDArray
|
8 |
|
@@ -149,44 +151,65 @@ def slice_embeddings(embeddings: NDArray, num_sentences: NumSentencesType) -> Em
|
|
149 |
raise TypeError(f"Incorrect Type for {num_sentences=}")
|
150 |
|
151 |
|
152 |
-
def is_nested_list_of_type(lst_obj, element_type, depth: int) -> bool:
|
153 |
"""
|
154 |
-
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
```python
|
169 |
-
# Test cases
|
170 |
-
is_nested_list_of_type("test", str, 0) # Returns True
|
171 |
-
is_nested_list_of_type([1, 2, 3], str, 0) # Returns False
|
172 |
-
is_nested_list_of_type(["apple", "banana"], str, 1) # Returns True
|
173 |
-
is_nested_list_of_type([[1, 2], [3, 4]], int, 2) # Returns True
|
174 |
-
is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2) # Returns False
|
175 |
-
is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3) # Returns True
|
176 |
-
```
|
177 |
-
|
178 |
-
Explanation:
|
179 |
-
- The function checks if `lst_obj` is a nested list of elements of type `element_type` up to `depth` levels deep.
|
180 |
-
- If `depth` is 0, it checks if `lst_obj` itself is of type `element_type`.
|
181 |
-
- If `depth` is greater than 0, it recursively checks each level of nesting to ensure all elements match `element_type`.
|
182 |
-
- Raises a `ValueError` if `depth` is negative, as depth must be a non-negative integer.
|
183 |
-
"""
|
184 |
-
if depth == 0:
|
185 |
-
return isinstance(lst_obj, element_type)
|
186 |
-
elif depth > 0:
|
187 |
-
return isinstance(lst_obj, list) and all(is_nested_list_of_type(item, element_type, depth - 1) for item in lst_obj)
|
188 |
-
else:
|
189 |
-
raise ValueError("Depth can't be negative")
|
190 |
|
191 |
|
192 |
def flatten_list(nested_list: list) -> list:
|
@@ -220,6 +243,27 @@ def compute_f1(p: float, r: float, eps=sys.float_info.epsilon) -> float:
|
|
220 |
return f1
|
221 |
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
@dataclass
|
224 |
class Scores:
|
225 |
"""
|
|
|
1 |
import statistics
|
2 |
+
import string
|
3 |
import sys
|
4 |
from dataclasses import dataclass, field
|
5 |
+
from typing import List, Union, Tuple
|
6 |
|
7 |
+
import nltk
|
8 |
import torch
|
9 |
from numpy.typing import NDArray
|
10 |
|
|
|
151 |
raise TypeError(f"Incorrect Type for {num_sentences=}")
|
152 |
|
153 |
|
154 |
+
def is_nested_list_of_type(lst_obj, element_type, depth: int) -> Tuple[bool, str]:
|
155 |
"""
|
156 |
+
Check if the given object is a nested list of a specific type up to a specified depth.
|
157 |
|
158 |
+
Args:
|
159 |
+
- lst_obj: The object to check, expected to be a list or a single element.
|
160 |
+
- element_type: The type that each element in the nested list should match.
|
161 |
+
- depth (int): The depth of nesting to check. Must be non-negative.
|
162 |
|
163 |
+
Returns:
|
164 |
+
- Tuple[bool, str]: A tuple containing:
|
165 |
+
- A boolean indicating if lst_obj is a nested list of the specified type up to the given depth.
|
166 |
+
- A string containing an error message if the check fails, or an empty string if the check passes.
|
167 |
+
|
168 |
+
Raises:
|
169 |
+
- ValueError: If depth is negative.
|
170 |
+
|
171 |
+
Example:
|
172 |
+
```python
|
173 |
+
# Test cases
|
174 |
+
is_nested_list_of_type("test", str, 0) # Returns (True, "")
|
175 |
+
is_nested_list_of_type([1, 2, 3], str, 0) # Returns (False, "Element is of type int, expected type str.")
|
176 |
+
is_nested_list_of_type(["apple", "banana"], str, 1) # Returns (True, "")
|
177 |
+
is_nested_list_of_type([[1, 2], [3, 4]], int, 2) # Returns (True, "")
|
178 |
+
is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2) # Returns (False, "Element at index 1 is of incorrect type.")
|
179 |
+
is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3) # Returns (True, "")
|
180 |
+
```
|
181 |
+
|
182 |
+
Explanation:
|
183 |
+
- The function checks if `lst_obj` is a nested list of elements of type `element_type` up to `depth` levels deep.
|
184 |
+
- If `depth` is 0, it checks if `lst_obj` itself is of type `element_type`.
|
185 |
+
- If `depth` is greater than 0, it recursively checks each level of nesting to ensure all elements match
|
186 |
+
`element_type`.
|
187 |
+
- Returns a tuple containing a boolean and an error message. The boolean is `True` if `lst_obj` matches the
|
188 |
+
criteria, `False` otherwise. The error message provides details if the check fails.
|
189 |
+
- Raises a `ValueError` if `depth` is negative, as depth must be a non-negative integer.
|
190 |
+
"""
|
191 |
+
orig_depth = depth
|
192 |
|
193 |
+
def _is_nested_list_of_type(lst_o, e_type, d) -> Tuple[bool, str]:
|
194 |
+
if d == 0:
|
195 |
+
if isinstance(lst_o, e_type):
|
196 |
+
return True, ""
|
197 |
+
else:
|
198 |
+
return False, f"Element is of type {type(lst_o).__name__}, expected type {e_type.__name__}."
|
199 |
+
elif d > 0:
|
200 |
+
if isinstance(lst_o, list):
|
201 |
+
for i, item in enumerate(lst_o):
|
202 |
+
is_valid, err = _is_nested_list_of_type(item, e_type, d - 1)
|
203 |
+
if not is_valid:
|
204 |
+
msg = f"Element at index {i} has incorrect type.\n{err}" if d == orig_depth else err
|
205 |
+
return False, msg
|
206 |
+
return True, ""
|
207 |
+
else:
|
208 |
+
return False, f"Object is not a list but {type(lst_o)}."
|
209 |
+
else:
|
210 |
+
raise ValueError("Depth can't be negative")
|
211 |
|
212 |
+
return _is_nested_list_of_type(lst_obj, element_type, depth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
|
215 |
def flatten_list(nested_list: list) -> list:
|
|
|
243 |
return f1
|
244 |
|
245 |
|
246 |
+
def sent_tokenize(text: str) -> List[str]:
|
247 |
+
"""
|
248 |
+
Tokenizes the input text into a list of sentences.
|
249 |
+
|
250 |
+
This function uses the NLTK library's sentence tokenizer to split the input
|
251 |
+
text into individual sentences. Leading and trailing whitespace is removed
|
252 |
+
from the input text before tokenization. If the input text is empty or consists
|
253 |
+
only of whitespace, a list containing an empty string is returned.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
text (str): The input text to be tokenized into sentences.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
List[str]: A list of sentences tokenized from the input text.
|
260 |
+
"""
|
261 |
+
text = text.strip()
|
262 |
+
if text == "":
|
263 |
+
return [""]
|
264 |
+
return [sent.strip() for sent in nltk.tokenize.sent_tokenize(text)]
|
265 |
+
|
266 |
+
|
267 |
@dataclass
|
268 |
class Scores:
|
269 |
"""
|