SemF1 / utils.py
nbansal's picture
Add doc strings
923c652
raw
history blame
9.55 kB
import statistics
import sys
from dataclasses import dataclass
from typing import List, Union
import torch
from numpy.typing import NDArray
from type_aliases import DEVICE_TYPE, ENCODER_DEVICE_TYPE, NumSentencesType, EmbeddingSlicesType
def get_gpu(gpu: DEVICE_TYPE) -> ENCODER_DEVICE_TYPE:
"""
Determine the correct GPU device based on the provided input. In the following, output 0 means CUDA device 0.
Args:
gpu (Union[bool, str, int, List[Union[str, int]]]): Input specifying the GPU device(s):
- bool: If True, returns 0 if CUDA is available, otherwise returns "cpu".
- str: Can be "cpu", "gpu", or "cuda" (case-insensitive). Returns 0 if CUDA is available
and the input is not "cpu", otherwise returns "cpu".
- int: Should be a valid GPU index. Returns the index if CUDA is available and valid,
otherwise returns "cpu".
- List[Union[str, int]]: List containing combinations of the str/int. Processes each
element and returns a list of corresponding results.
Returns:
Union[str, int, List[Union[str, int]]]: Depending on the input type:
- str: Returns "cpu" if no GPU is available or the input is "cpu".
- int: Returns the GPU index if valid and CUDA is available.
- List[Union[str, int]]: Returns a list of strings and/or integers based on the input list.
Raises:
ValueError: If the input gpu type is not recognized or invalid.
ValueError: If a string input is not one of ["cpu", "gpu", "cuda"].
ValueError: If an integer input is outside the valid range of GPU indices.
Notes:
- This function checks CUDA availability using torch.cuda.is_available() and counts
available GPUs using torch.cuda.device_count().
- Case insensitivity is maintained for string inputs ("cpu", "gpu", "cuda").
- The function ensures robust error handling for invalid input types or out-of-range indices.
"""
# Ensure gpu index is within the range of total available gpus
gpu_available = torch.cuda.is_available()
gpu_count = torch.cuda.device_count()
correct_strs = ["cpu", "gpu", "cuda"]
def _get_single_device(gpu_item):
if isinstance(gpu_item, bool):
return 0 if gpu_item and gpu_available else "cpu"
elif isinstance(gpu_item, str):
if gpu_item.lower() not in correct_strs:
raise ValueError(f"Wrong gpu type: {gpu_item}. Should be one of {correct_strs}")
return 0 if (gpu_item.lower() != "cpu") and gpu_available else "cpu"
elif isinstance(gpu_item, int):
if gpu_item >= gpu_count:
raise ValueError(
f"There are {gpu_count} GPUs available. Provide a valid GPU index. You provided: {gpu_item}"
)
return gpu_item if gpu_available else "cpu"
else:
raise ValueError(f"Invalid gpu type: {type(gpu_item)}. Must be bool, str, or int.")
if isinstance(gpu, list):
seen_indices = set()
result = []
for item in gpu:
device = _get_single_device(item)
if isinstance(device, int):
if device not in seen_indices:
seen_indices.add(device)
result.append(device)
else:
result.append(device)
return result
else:
return _get_single_device(gpu)
def slice_embeddings(embeddings: NDArray, num_sentences: NumSentencesType) -> EmbeddingSlicesType:
"""
Slice embeddings into segments based on the provided number of sentences per segment.
Args:
- embeddings (np.ndarray): The array of embeddings to be sliced.
- num_sentences (Union[List[int], List[List[int]]]):
- If a list of integers: Specifies the number of embeddings to take in each slice.
- If a list of lists of integers: Specifies multiple nested levels of slicing.
Returns:
- List[np.ndarray]: A list of numpy arrays where each array represents a slice of embeddings.
Raises:
- TypeError: If `num_sentences` is not of type List[int] or List[List[int]].
Example Usage:
```python
embeddings = np.random.rand(10, 5)
num_sentences = [3, 2, 5]
result = slice_embeddings(embeddings, num_sentences)
# `result` will be a list of numpy arrays:
# [embeddings[:3], embeddings[3:5], embeddings[5:]]
num_sentences_nested = [[2, 1], [3, 4]]
result_nested = slice_embeddings(embeddings, num_sentences_nested)
# `result_nested` will be a nested list of numpy arrays:
# [[embeddings[:2], embeddings[2:3]], [embeddings[3:6], embeddings[6:]]]
slice_embeddings(embeddings, "invalid") # Raises a TypeError
```
"""
def _slice_embeddings(s_idx: int, n_sentences: List[int]):
"""
Helper function to slice embeddings starting from index `s_idx`.
Args:
- s_idx (int): Starting index for slicing.
- n_sentences (List[int]): List specifying number of sentences in each slice.
Returns:
- Tuple[List[np.ndarray], int]: A tuple containing a list of sliced embeddings and the next starting index.
"""
_result = []
for count in n_sentences:
_result.append(embeddings[s_idx:s_idx + count])
s_idx += count
return _result, s_idx
if isinstance(num_sentences, list) and all(isinstance(item, int) for item in num_sentences):
result, _ = _slice_embeddings(0, num_sentences)
return result
elif isinstance(num_sentences, list) and all(
isinstance(sublist, list) and all(
isinstance(item, int) for item in sublist
)
for sublist in num_sentences
):
nested_result = []
start_idx = 0
for nested_num_sentences in num_sentences:
embedding_slice, start_idx = _slice_embeddings(start_idx, nested_num_sentences)
nested_result.append(embedding_slice)
return nested_result
else:
raise TypeError(f"Incorrect Type for {num_sentences=}")
def is_nested_list_of_type(lst_obj, element_type, depth: int) -> bool:
"""
Check if the given object is a nested list of a specific type up to a specified depth.
Args:
- lst_obj: The object to check, expected to be a list or a single element.
- element_type: The type that each element in the nested list should match.
- depth (int): The depth of nesting to check. Must be non-negative.
Returns:
- bool: True if lst_obj is a nested list of the specified type up to the given depth, False otherwise.
Raises:
- ValueError: If depth is negative.
Example:
```python
# Test cases
is_nested_list_of_type("test", str, 0) # Returns True
is_nested_list_of_type([1, 2, 3], str, 0) # Returns False
is_nested_list_of_type(["apple", "banana"], str, 1) # Returns True
is_nested_list_of_type([[1, 2], [3, 4]], int, 2) # Returns True
is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2) # Returns False
is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3) # Returns True
```
Explanation:
- The function checks if `lst_obj` is a nested list of elements of type `element_type` up to `depth` levels deep.
- If `depth` is 0, it checks if `lst_obj` itself is of type `element_type`.
- If `depth` is greater than 0, it recursively checks each level of nesting to ensure all elements match `element_type`.
- Raises a `ValueError` if `depth` is negative, as depth must be a non-negative integer.
"""
if depth == 0:
return isinstance(lst_obj, element_type)
elif depth > 0:
return isinstance(lst_obj, list) and all(is_nested_list_of_type(item, element_type, depth - 1) for item in lst_obj)
else:
raise ValueError("Depth can't be negative")
def flatten_list(nested_list: list) -> list:
"""
Recursively flattens a nested list of any depth.
Parameters:
nested_list (list): The nested list to flatten.
Returns:
list: A flat list containing all the elements of the nested list.
"""
flat_list = []
for item in nested_list:
if isinstance(item, list):
flat_list.extend(flatten_list(item))
else:
flat_list.append(item)
return flat_list
def compute_f1(p: float, r: float, eps=sys.float_info.epsilon) -> float:
"""
Computes F1 value
:param p: Precision Value
:param r: Recall Value
:param eps: Epsilon Value
:return:
"""
f1 = 2 * p * r / (p + r + eps)
return f1
@dataclass
class Scores:
"""
Data class representing evaluation scores including precision, recall, and computed F1 score.
Attributes:
- precision (float): The precision score for the evaluation.
- recall (List[float]): List of recall scores for each reference
- f1 (float): Computed F1 score based on the precision and mean recall values.
"""
precision: float
recall: List[float]
def __post_init__(self):
self.f1: float = compute_f1(self.precision, statistics.fmean(self.recall))