Brian Sigafoos commited on
Commit
051daf1
Β·
1 Parent(s): 9dc272e

Add title and link to blog post

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. app.ipynb +10 -5
  3. app.py +12 -7
README.md CHANGED
@@ -2,7 +2,7 @@
2
  title: Fastai Trees
3
  emoji: πŸ‚
4
  colorFrom: green
5
- colorTo: brown
6
  sdk: gradio
7
  sdk_version: 3.14.0
8
  app_file: app.py
 
2
  title: Fastai Trees
3
  emoji: πŸ‚
4
  colorFrom: green
5
+ colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.14.0
8
  app_file: app.py
app.ipynb CHANGED
@@ -79,7 +79,6 @@
79
  "\n",
80
  "categories = ('ash', 'chestnut', 'ginkgo biloba', 'silver maple', 'willow oak')\n",
81
  "\n",
82
- "\n",
83
  "def classify_image(img):\n",
84
  " pred, idx, probs = learn.predict(img)\n",
85
  " # Change each probability to a float, since Gradio doesn't support Tensors or NumPy\n",
@@ -109,15 +108,21 @@
109
  "metadata": {},
110
  "outputs": [],
111
  "source": [
112
- "#|export\n",
113
  "image = gr.inputs.Image(shape=(192, 192))\n",
114
  "label = gr.outputs.Label()\n",
115
  "examples = ['images/ash.jpg', 'images/chestnut.jpg', 'images/ginkgo_biloba.jpg',\n",
116
  " 'images/silver_maple.jpg', 'images/willow_oak.jpg']\n",
 
 
 
 
 
117
  "\n",
118
- "interface = gr.Interface(fn=classify_image, inputs=image,\n",
119
- " outputs=label, examples=examples)\n",
120
- "interface.launch(inline=False)"
 
121
  ]
122
  },
123
  {
 
79
  "\n",
80
  "categories = ('ash', 'chestnut', 'ginkgo biloba', 'silver maple', 'willow oak')\n",
81
  "\n",
 
82
  "def classify_image(img):\n",
83
  " pred, idx, probs = learn.predict(img)\n",
84
  " # Change each probability to a float, since Gradio doesn't support Tensors or NumPy\n",
 
108
  "metadata": {},
109
  "outputs": [],
110
  "source": [
111
+ "# |export\n",
112
  "image = gr.inputs.Image(shape=(192, 192))\n",
113
  "label = gr.outputs.Label()\n",
114
  "examples = ['images/ash.jpg', 'images/chestnut.jpg', 'images/ginkgo_biloba.jpg',\n",
115
  " 'images/silver_maple.jpg', 'images/willow_oak.jpg']\n",
116
+ "# More useful args\n",
117
+ "title = \"Tree leaf classifier demo\"\n",
118
+ "description = \"A tree leaf classifier demo, trained on images downloaded from DuckDuckGo. Created as a demo of HuggingFace Spaces and Gradio.\"\n",
119
+ "article = \"<p>From this blog post: <a href='https://briansigafoos.com/ml-quick-start' target='_blank'>Machine Learning quick start by Brian Sigafoos</a></p>\"\n",
120
+ "interpretation = 'default'\n",
121
  "\n",
122
+ "interface = gr.Interface(fn=classify_image, inputs=image, outputs=label,\n",
123
+ " examples=examples, title=title, description=description,\n",
124
+ " article=article, interpretation=interpretation)\n",
125
+ "interface.launch(inline=False)\n"
126
  ]
127
  },
128
  {
app.py CHANGED
@@ -1,8 +1,8 @@
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
 
3
  # %% auto 0
4
- __all__ = ['learn', 'categories', 'image', 'label',
5
- 'examples', 'interface', 'classify_image']
6
 
7
  # %% app.ipynb 2
8
  from fastai.vision.all import *
@@ -14,19 +14,24 @@ learn = load_learner('model.pkl')
14
  # %% app.ipynb 7
15
  categories = ('ash', 'chestnut', 'ginkgo biloba', 'silver maple', 'willow oak')
16
 
17
-
18
  def classify_image(img):
19
  pred, idx, probs = learn.predict(img)
20
  # Change each probability to a float, since Gradio doesn't support Tensors or NumPy
21
  return dict(zip(categories, map(float, probs)))
22
 
23
-
24
  # %% app.ipynb 10
25
  image = gr.inputs.Image(shape=(192, 192))
26
  label = gr.outputs.Label()
27
  examples = ['images/ash.jpg', 'images/chestnut.jpg', 'images/ginkgo_biloba.jpg',
28
  'images/silver_maple.jpg', 'images/willow_oak.jpg']
29
-
30
- interface = gr.Interface(fn=classify_image, inputs=image,
31
- outputs=label, examples=examples)
 
 
 
 
 
 
32
  interface.launch(inline=False)
 
 
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
 
3
  # %% auto 0
4
+ __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'title', 'description', 'article', 'interpretation', 'interface',
5
+ 'classify_image']
6
 
7
  # %% app.ipynb 2
8
  from fastai.vision.all import *
 
14
  # %% app.ipynb 7
15
  categories = ('ash', 'chestnut', 'ginkgo biloba', 'silver maple', 'willow oak')
16
 
 
17
  def classify_image(img):
18
  pred, idx, probs = learn.predict(img)
19
  # Change each probability to a float, since Gradio doesn't support Tensors or NumPy
20
  return dict(zip(categories, map(float, probs)))
21
 
 
22
  # %% app.ipynb 10
23
  image = gr.inputs.Image(shape=(192, 192))
24
  label = gr.outputs.Label()
25
  examples = ['images/ash.jpg', 'images/chestnut.jpg', 'images/ginkgo_biloba.jpg',
26
  'images/silver_maple.jpg', 'images/willow_oak.jpg']
27
+ # More useful args
28
+ title = "Tree leaf classifier demo"
29
+ description = "A tree leaf classifier demo, trained on images downloaded from DuckDuckGo. Created as a demo of HuggingFace Spaces and Gradio."
30
+ article = "<p>From this blog post: <a href='https://briansigafoos.com/ml-quick-start' target='_blank'>Machine Learning quick start by Brian Sigafoos</a></p>"
31
+ interpretation = 'default'
32
+
33
+ interface = gr.Interface(fn=classify_image, inputs=image, outputs=label,
34
+ examples=examples, title=title, description=description,
35
+ article=article, interpretation=interpretation)
36
  interface.launch(inline=False)
37
+