anaucoin commited on
Commit
29deb23
1 Parent(s): 33f02f1

initial commit of app files

Browse files
Files changed (2) hide show
  1. ct_app.py +337 -0
  2. requirements.txt +8 -0
ct_app.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ---
2
+ # jupyter:
3
+ # jupytext:
4
+ # text_representation:
5
+ # extension: .py
6
+ # format_name: light
7
+ # format_version: '1.5'
8
+ # jupytext_version: 1.14.2
9
+ # kernelspec:
10
+ # display_name: Python [conda env:bbytes] *
11
+ # language: python
12
+ # name: conda-env-bbytes-py
13
+ # ---
14
+
15
+ # +
16
+ import csv
17
+ import pandas as pd
18
+ from datetime import datetime, timedelta
19
+ import numpy as np
20
+ import datetime as dt
21
+ import matplotlib.pyplot as plt
22
+ from pathlib import Path
23
+
24
+ import streamlit as st
25
+ import plotly.express as px
26
+ import altair as alt
27
+ import dateutil.parser
28
+ import copy
29
+
30
+
31
+ # +
32
+ @st.experimental_memo
33
+ def get_hist_info(df_coin, principal_balance,plheader):
34
+ numtrades = int(len(df_coin))
35
+ numwin = int(sum(df_coin[plheader] > 0))
36
+ numloss = int(sum(df_coin[plheader] < 0))
37
+ winrate = int(np.round(100*numwin/numtrades,2))
38
+
39
+ grosswin = sum(df_coin[df_coin[plheader] > 0][plheader])
40
+ grossloss = sum(df_coin[df_coin[plheader] < 0][plheader])
41
+ if grossloss !=0:
42
+ pfactor = -1*np.round(grosswin/grossloss,2)
43
+ else:
44
+ pfactor = np.nan
45
+ return numtrades, numwin, numloss, winrate, pfactor
46
+ @st.experimental_memo
47
+ def get_rolling_stats(df, lev, otimeheader, days):
48
+ rollend = datetime.today()-timedelta(days=days)
49
+ rolling_df = df[df[otimeheader] >= rollend]
50
+
51
+ if len(rolling_df) > 0:
52
+ rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1
53
+ else:
54
+ rolling_perc = 0
55
+ return 100*lev*rolling_perc
56
+
57
+ @st.experimental_memo
58
+ def filt_df(
59
+ df: pd.DataFrame, cheader : str, symbol_selections: list[str]) -> pd.DataFrame:
60
+ """
61
+ Inputs: df (pd.DataFrame), cheader (str) and symbol_selections (list[str]).
62
+
63
+ Returns a filtered pd.DataFrame containing only data that matches symbol_selections (list[str])
64
+ from df[cheader].
65
+ """
66
+
67
+ df = df.copy()
68
+ df = df[df[cheader].isin(symbol_selections)]
69
+
70
+ return df
71
+
72
+ @st.experimental_memo
73
+ def my_style(v, props=''):
74
+ props = 'color:red' if v < 0 else 'color:green'
75
+ return props
76
+
77
+ @st.cache(ttl=24*3600, allow_output_mutation=True)
78
+ def load_data(filename, otimeheader, fmat):
79
+ df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value
80
+ df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %']
81
+ df.insert(1, 'Signal', ['Long']*len(df))
82
+
83
+ df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True)
84
+ df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True)
85
+ df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True)
86
+ df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True)
87
+ df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True)
88
+ df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True)
89
+
90
+ df['Buy Price'] = pd.to_numeric(df['Buy Price'])
91
+ df['Sell Price'] = pd.to_numeric(df['Sell Price'])
92
+ df['P/L per token'] = pd.to_numeric(df['P/L per token'])
93
+ df['P/L %'] = pd.to_numeric(df['P/L %'])
94
+
95
+ dateheader = 'Date'
96
+ theader = 'Time'
97
+
98
+ df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values]
99
+ df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values]
100
+
101
+ df[otimeheader]= [dateutil.parser.parse(date+' '+time)
102
+ for date,time in zip(df[dateheader],df[theader])]
103
+
104
+ df[otimeheader] = pd.to_datetime(df[otimeheader])
105
+ df['Exit Date'] = pd.to_datetime(df['Exit Date'])
106
+ df.sort_values(by=otimeheader, inplace=True)
107
+
108
+ df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]]
109
+ df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]]
110
+ df['Trade'] = df.index + 1 #reindex
111
+
112
+ df['DCA'] = np.nan
113
+
114
+ for exit in pd.unique(df['Exit Date']):
115
+ df_exit = df[df['Exit Date']==exit]
116
+ for i in range(len(df_exit)):
117
+ ind = df_exit.index[i]
118
+ df.loc[ind,'DCA'] = i+1
119
+ return df
120
+
121
+ def runapp() -> None:
122
+ bot_selections = "Cinnamon Toast"
123
+ otimeheader = 'Entry Date'
124
+ fmat = '%Y-%m-%d %H:%M:%S'
125
+ dollar_cap = 30000.00
126
+ fees = .075/100
127
+ st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:")
128
+ st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " +
129
+ "the performance of our trading bots.")
130
+ # st.sidebar.header("FAQ")
131
+
132
+ # with st.sidebar.subheader("FAQ"):
133
+ # st.write(Path("FAQ_README.md").read_text())
134
+ st.subheader("Choose your settings:")
135
+ no_errors = True
136
+
137
+ data = load_data("CT-Trade-Log.csv",otimeheader, fmat)
138
+ df = data.copy(deep=True)
139
+
140
+ dateheader = 'Date'
141
+ theader = 'Time'
142
+
143
+ with st.form("user input", ):
144
+ if no_errors:
145
+ with st.container():
146
+ col1, col2 = st.columns(2)
147
+ with col1:
148
+ try:
149
+ startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min())
150
+ except:
151
+ st.error("Please select your exchange or upload a supported trade log file.")
152
+ no_errors = False
153
+ with col2:
154
+ try:
155
+ enddate = st.date_input("End Date", value=datetime.today())
156
+ except:
157
+ st.error("Please select your exchange or upload a supported trade log file.")
158
+ no_errors = False
159
+ #st.sidebar.subheader("Customize your Dashboard")
160
+
161
+ if no_errors and (enddate < startdate):
162
+ st.error("End Date must be later than Start date. Please try again.")
163
+ no_errors = False
164
+ with st.container():
165
+ col1,col2 = st.columns(2)
166
+ with col2:
167
+ lev = st.number_input('Leverage', min_value=1, value=1, max_value= 5, step=1)
168
+ with col1:
169
+ principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01)
170
+ with st.container():
171
+ col1, col2, col3, col4 = st.columns(4)
172
+ with col1:
173
+ dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1)
174
+ with col2:
175
+ dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1)
176
+ with col3:
177
+ dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1)
178
+ with col4:
179
+ dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1)
180
+
181
+ #hack way to get button centered
182
+ c = st.columns(9)
183
+ with c[4]:
184
+ submitted = st.form_submit_button("Get Cookin'!")
185
+
186
+ if submitted and principal_balance * lev > dollar_cap:
187
+ lev = np.floor(dollar_cap/principal_balance)
188
+ st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}")
189
+
190
+ if submitted and no_errors:
191
+ df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)]
192
+
193
+ if len(df) == 0:
194
+ st.error("There are no available trades matching your selections. Please try again!")
195
+ no_errors = False
196
+ if no_errors:
197
+
198
+ dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100}
199
+
200
+ df['DCA %'] = df['DCA'].map(dca_map)
201
+
202
+ signal_map = {'Long': 1, 'Short':-1} # 1 for long #-1 for short
203
+
204
+ df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade
205
+
206
+ df['Return Per Trade'] = np.nan
207
+
208
+ g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade')
209
+
210
+ df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+g['Return Per Trade'].values
211
+
212
+ df['Compounded Return'] = df['Return Per Trade'].cumprod()
213
+ df['Balance used in Trade'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']]
214
+ df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*lev*df['Balance used in Trade']
215
+ df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum()
216
+ cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance
217
+
218
+ effective_return = 100*((cum_pl - principal_balance)/principal_balance)
219
+
220
+ st.header(f"{bot_selections} Results")
221
+ if len(bot_selections) > 1:
222
+ st.metric(
223
+ "Total Account Balance",
224
+ f"${cum_pl:.2f}",
225
+ f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %",
226
+ )
227
+
228
+ st.line_chart(data=df.dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True)
229
+
230
+ df['Per Trade Return Rate'] = df['Return Per Trade']-1
231
+
232
+ totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor'])
233
+ data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate')
234
+ totals.loc[len(totals)] = list(i for i in data)
235
+
236
+ totals['Cum. P/L'] = cum_pl-principal_balance
237
+ totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance
238
+ #results_df['Avg. P/L'] = (cum_pl-principal_balance)/results_df['# of Trades'].values[0]
239
+ #results_df['Avg. P/L (%)'] = 100*results_df['Avg. P/L'].values[0]/principal_balance
240
+
241
+ if df.empty:
242
+ st.error("Oops! None of the data provided matches your selection(s). Please try again.")
243
+ else:
244
+ #st.dataframe(totals.style.format({'# of Trades': '{:.0f}','Wins': '{:.0f}','Losses': '{:.0f}','Win Rate': '{:.2f}%','Profit Factor' : '{:.2f}', 'Avg. P/L (%)': '{:.2f}%', 'Cum. P/L (%)': '{:.2f}%', 'Cum. P/L': '{:.2f}', 'Avg. P/L': '{:.2f}'})
245
+ #.text_gradient(subset=['Win Rate'],cmap="RdYlGn", vmin = 0, vmax = 100)\
246
+ #.text_gradient(subset=['Profit Factor'],cmap="RdYlGn", vmin = 0, vmax = 2), use_container_width=True)
247
+ for row in totals.itertuples():
248
+ col1, col2, col3, col4 = st.columns(4)
249
+ c1, c2, c3, c4 = st.columns(4)
250
+ with col1:
251
+ st.metric(
252
+ "Total Trades",
253
+ f"{row._1:.0f}",
254
+ )
255
+ with c1:
256
+ st.metric(
257
+ "Profit Factor",
258
+ f"{row._5:.2f}",
259
+ )
260
+ with col2:
261
+ st.metric(
262
+ "Wins",
263
+ f"{row.Wins:.0f}",
264
+ )
265
+ with c2:
266
+ st.metric(
267
+ "Cumulative P/L",
268
+ f"${row._6:.2f}",
269
+ f"{row._7:.2f} %",
270
+ )
271
+ with col3:
272
+ st.metric(
273
+ "Losses",
274
+ f"{row.Losses:.0f}",
275
+ )
276
+ with c3:
277
+ st.metric(
278
+ "Rolling 7 Days",
279
+ "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
280
+ f"{get_rolling_stats(df,lev, otimeheader, 7):.2f}%",
281
+ )
282
+ st.metric(
283
+ "Rolling 30 Days",
284
+ "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
285
+ f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%",
286
+ )
287
+
288
+ with col4:
289
+ st.metric(
290
+ "Win Rate",
291
+ f"{row._4:.1f}%",
292
+ )
293
+ with c4:
294
+ st.metric(
295
+ "Rolling 90 Days",
296
+ "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
297
+ f"{get_rolling_stats(df,lev, otimeheader, 90):.2f}%",
298
+ )
299
+ st.metric(
300
+ "Rolling 180 Days",
301
+ "",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}",
302
+ f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%",
303
+ )
304
+ if submitted:
305
+ grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
306
+ 'Sell Price' : 'max',
307
+ 'P/L per token': 'mean',
308
+ 'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2),
309
+ 'DCA': 'max'})
310
+ grouped_df.index = range(1, len(grouped_df)+1)
311
+ grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
312
+ 'P/L per token':'Avg. P/L per token',
313
+ 'Calculated Return %':'P/L %'}, inplace=True)
314
+ else:
315
+ grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean',
316
+ 'Sell Price' : 'max',
317
+ 'P/L per token': 'mean',
318
+ 'P/L %':lambda x: np.round(x.sum()/4,2),
319
+ 'DCA': 'max'})
320
+ grouped_df.index = range(1, len(grouped_df)+1)
321
+ grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price',
322
+ 'P/L per token':'Avg. P/L per token'}, inplace=True)
323
+
324
+ st.subheader("Trade Logs")
325
+ st.dataframe(grouped_df.style.format({'Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}','# of DCAs':'{:.0f}', 'Avg. P/L per token':'${:.2f}', 'P/L %' :'{:.2f}%'})\
326
+ .applymap(my_style,subset=['Avg. P/L per token'])\
327
+ .applymap(my_style,subset=['P/L %']), use_container_width=True)
328
+
329
+ if __name__ == "__main__":
330
+ st.set_page_config(
331
+ "Trading Bot Dashboard",
332
+ layout="wide",
333
+ )
334
+ runapp()
335
+ # -
336
+
337
+
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ pandas
2
+ datetime
3
+ numpy
4
+ matplotlib
5
+ pathlib
6
+ plotly
7
+ altair
8
+ streamlit