Spaces:
Sleeping
Sleeping
# --- | |
# jupyter: | |
# jupytext: | |
# text_representation: | |
# extension: .py | |
# format_name: light | |
# format_version: '1.5' | |
# jupytext_version: 1.14.2 | |
# kernelspec: | |
# display_name: Python [conda env:bbytes] * | |
# language: python | |
# name: conda-env-bbytes-py | |
# --- | |
# + | |
import csv | |
import pandas as pd | |
from datetime import datetime, timedelta | |
import numpy as np | |
import datetime as dt | |
import matplotlib.pyplot as plt | |
from pathlib import Path | |
import streamlit as st | |
import plotly.express as px | |
import altair as alt | |
import dateutil.parser | |
import copy | |
# + | |
def get_hist_info(df_coin, principal_balance,plheader): | |
numtrades = int(len(df_coin)) | |
numwin = int(sum(df_coin[plheader] > 0)) | |
numloss = int(sum(df_coin[plheader] < 0)) | |
winrate = int(np.round(100*numwin/numtrades,2)) | |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader]) | |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader]) | |
if grossloss !=0: | |
pfactor = -1*np.round(grosswin/grossloss,2) | |
else: | |
pfactor = np.nan | |
return numtrades, numwin, numloss, winrate, pfactor | |
def get_rolling_stats(df, lev, otimeheader, days): | |
rollend = datetime.today()-timedelta(days=days) | |
rolling_df = df[df[otimeheader] >= rollend] | |
if len(rolling_df) > 0: | |
rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1 | |
else: | |
rolling_perc = 0 | |
return 100*lev*rolling_perc | |
def filt_df(df, cheader, symbol_selections): | |
""" | |
Inputs: df (pd.DataFrame), cheader (str) and symbol_selections (list[str]). | |
Returns a filtered pd.DataFrame containing only data that matches symbol_selections (list[str]) | |
from df[cheader]. | |
""" | |
df = df.copy() | |
df = df[df[cheader].isin(symbol_selections)] | |
return df | |
def my_style(v, props=''): | |
props = 'color:red' if v < 0 else 'color:green' | |
return props | |
def load_data(filename, otimeheader, fmat): | |
df = pd.read_csv(open(filename,'r'), sep='\t') # so as not to mutate cached value | |
df.columns = ['Trade','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %', 'Drawdown %'] | |
df.insert(1, 'Signal', ['Long']*len(df)) | |
df['Buy Price'] = df['Buy Price'].str.replace('$', '', regex=True) | |
df['Sell Price'] = df['Sell Price'].str.replace('$', '', regex=True) | |
df['Buy Price'] = df['Buy Price'].str.replace(',', '', regex=True) | |
df['Sell Price'] = df['Sell Price'].str.replace(',', '', regex=True) | |
df['P/L per token'] = df['P/L per token'].str.replace('$', '', regex=True) | |
df['P/L %'] = df['P/L %'].str.replace('%', '', regex=True) | |
df['Buy Price'] = pd.to_numeric(df['Buy Price']) | |
df['Sell Price'] = pd.to_numeric(df['Sell Price']) | |
df['P/L per token'] = pd.to_numeric(df['P/L per token']) | |
df['P/L %'] = pd.to_numeric(df['P/L %']) | |
dateheader = 'Date' | |
theader = 'Time' | |
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values] | |
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values] | |
df[otimeheader]= [dateutil.parser.parse(date+' '+time) | |
for date,time in zip(df[dateheader],df[theader])] | |
df[otimeheader] = pd.to_datetime(df[otimeheader]) | |
df['Exit Date'] = pd.to_datetime(df['Exit Date']) | |
df.sort_values(by=otimeheader, inplace=True) | |
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]] | |
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]] | |
df['Trade'] = df.index + 1 #reindex | |
df['DCA'] = np.nan | |
for exit in pd.unique(df['Exit Date']): | |
df_exit = df[df['Exit Date']==exit] | |
for i in range(len(df_exit)): | |
ind = df_exit.index[i] | |
df.loc[ind,'DCA'] = i+1 | |
return df | |
def runapp(): | |
bot_selections = "Cinnamon Toast" | |
otimeheader = 'Entry Date' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
dollar_cap = 30000.00 | |
fees = .075/100 | |
st.header(f"{bot_selections} Performance Dashboard :bread: :moneybag:") | |
st.write("Welcome to the Trading Bot Dashboard by BreadBytes! You can use this dashboard to track " + | |
"the performance of our trading bots.") | |
# st.sidebar.header("FAQ") | |
# with st.sidebar.subheader("FAQ"): | |
# st.write(Path("FAQ_README.md").read_text()) | |
st.subheader("Choose your settings:") | |
no_errors = True | |
data = load_data("CT-Trade-Log.csv",otimeheader, fmat) | |
df = data.copy(deep=True) | |
dateheader = 'Date' | |
theader = 'Time' | |
with st.form("user input", ): | |
if no_errors: | |
with st.container(): | |
col1, col2 = st.columns(2) | |
with col1: | |
try: | |
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min()) | |
except: | |
st.error("Please select your exchange or upload a supported trade log file.") | |
no_errors = False | |
with col2: | |
try: | |
enddate = st.date_input("End Date", value=datetime.today()) | |
except: | |
st.error("Please select your exchange or upload a supported trade log file.") | |
no_errors = False | |
#st.sidebar.subheader("Customize your Dashboard") | |
if no_errors and (enddate < startdate): | |
st.error("End Date must be later than Start date. Please try again.") | |
no_errors = False | |
with st.container(): | |
col1,col2 = st.columns(2) | |
with col2: | |
lev = st.number_input('Leverage', min_value=1, value=1, max_value= 5, step=1) | |
with col1: | |
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01) | |
with st.container(): | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
dca1 = st.number_input('DCA 1 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
with col2: | |
dca2 = st.number_input('DCA 2 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
with col3: | |
dca3 = st.number_input('DCA 3 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
with col4: | |
dca4 = st.number_input('DCA 4 Allocation', min_value=0, value=25, max_value= 100, step=1) | |
#hack way to get button centered | |
c = st.columns(9) | |
with c[4]: | |
submitted = st.form_submit_button("Get Cookin'!") | |
if submitted and principal_balance * lev > dollar_cap: | |
lev = np.floor(dollar_cap/principal_balance) | |
st.error(f"WARNING: (Starting Balance)*(Leverage) exceeds the ${dollar_cap} limit. Using maximum available leverage of {lev}") | |
if submitted and no_errors: | |
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)] | |
if len(df) == 0: | |
st.error("There are no available trades matching your selections. Please try again!") | |
no_errors = False | |
if no_errors: | |
dca_map = {1: dca1/100, 2: dca2/100, 3: dca3/100, 4: dca4/100} | |
df['DCA %'] = df['DCA'].map(dca_map) | |
signal_map = {'Long': 1, 'Short':-1} # 1 for long #-1 for short | |
df['Calculated Return %'] = df['Signal'].map(signal_map)*(df['DCA %'])*(1-fees)*((df['Sell Price']-df['Buy Price'])/df['Buy Price'] - fees) #accounts for fees on open and close of trade | |
df['Return Per Trade'] = np.nan | |
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade') | |
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+g['Return Per Trade'].values | |
df['Compounded Return'] = df['Return Per Trade'].cumprod() | |
df['Balance used in Trade'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']] | |
df['Net P/L Per Trade'] = (df['Return Per Trade']-1)*lev*df['Balance used in Trade'] | |
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum() | |
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance | |
effective_return = 100*((cum_pl - principal_balance)/principal_balance) | |
st.header(f"{bot_selections} Results") | |
if len(bot_selections) > 1: | |
st.metric( | |
"Total Account Balance", | |
f"${cum_pl:.2f}", | |
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %", | |
) | |
st.line_chart(data=df.dropna(), x='Exit Date', y='Cumulative P/L', use_container_width=True) | |
df['Per Trade Return Rate'] = df['Return Per Trade']-1 | |
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor']) | |
data = get_hist_info(df.dropna(), principal_balance,'Per Trade Return Rate') | |
totals.loc[len(totals)] = list(i for i in data) | |
totals['Cum. P/L'] = cum_pl-principal_balance | |
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance | |
#results_df['Avg. P/L'] = (cum_pl-principal_balance)/results_df['# of Trades'].values[0] | |
#results_df['Avg. P/L (%)'] = 100*results_df['Avg. P/L'].values[0]/principal_balance | |
if df.empty: | |
st.error("Oops! None of the data provided matches your selection(s). Please try again.") | |
else: | |
#st.dataframe(totals.style.format({'# of Trades': '{:.0f}','Wins': '{:.0f}','Losses': '{:.0f}','Win Rate': '{:.2f}%','Profit Factor' : '{:.2f}', 'Avg. P/L (%)': '{:.2f}%', 'Cum. P/L (%)': '{:.2f}%', 'Cum. P/L': '{:.2f}', 'Avg. P/L': '{:.2f}'}) | |
#.text_gradient(subset=['Win Rate'],cmap="RdYlGn", vmin = 0, vmax = 100)\ | |
#.text_gradient(subset=['Profit Factor'],cmap="RdYlGn", vmin = 0, vmax = 2), use_container_width=True) | |
for row in totals.itertuples(): | |
col1, col2, col3, col4 = st.columns(4) | |
c1, c2, c3, c4 = st.columns(4) | |
with col1: | |
st.metric( | |
"Total Trades", | |
f"{row._1:.0f}", | |
) | |
with c1: | |
st.metric( | |
"Profit Factor", | |
f"{row._5:.2f}", | |
) | |
with col2: | |
st.metric( | |
"Wins", | |
f"{row.Wins:.0f}", | |
) | |
with c2: | |
st.metric( | |
"Cumulative P/L", | |
f"${row._6:.2f}", | |
f"{row._7:.2f} %", | |
) | |
with col3: | |
st.metric( | |
"Losses", | |
f"{row.Losses:.0f}", | |
) | |
with c3: | |
st.metric( | |
"Rolling 7 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 7):.2f}%", | |
) | |
st.metric( | |
"Rolling 30 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 30):.2f}%", | |
) | |
with col4: | |
st.metric( | |
"Win Rate", | |
f"{row._4:.1f}%", | |
) | |
with c4: | |
st.metric( | |
"Rolling 90 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 90):.2f}%", | |
) | |
st.metric( | |
"Rolling 180 Days", | |
"",#f"{(1+get_rolling_stats(df,otimeheader, 30))*principal_balance:.2f}", | |
f"{get_rolling_stats(df,lev, otimeheader, 180):.2f}%", | |
) | |
if submitted: | |
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'P/L per token': 'mean', | |
'Calculated Return %' : lambda x: np.round(100*lev*x.sum(),2), | |
'DCA': 'max'}) | |
grouped_df.index = range(1, len(grouped_df)+1) | |
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', | |
'P/L per token':'Avg. P/L per token', | |
'Calculated Return %':'P/L %'}, inplace=True) | |
else: | |
grouped_df = df.groupby('Exit Date').agg({'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'P/L per token': 'mean', | |
'P/L %':lambda x: np.round(x.sum()/4,2), | |
'DCA': 'max'}) | |
grouped_df.index = range(1, len(grouped_df)+1) | |
grouped_df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', | |
'P/L per token':'Avg. P/L per token'}, inplace=True) | |
st.subheader("Trade Logs") | |
st.dataframe(grouped_df.style.format({'Avg. Buy Price': '${:.2f}', 'Sell Price': '${:.2f}','# of DCAs':'{:.0f}', 'Avg. P/L per token':'${:.2f}', 'P/L %' :'{:.2f}%'})\ | |
.applymap(my_style,subset=['Avg. P/L per token'])\ | |
.applymap(my_style,subset=['P/L %']), use_container_width=True) | |
if __name__ == "__main__": | |
st.set_page_config( | |
"Trading Bot Dashboard", | |
layout="wide", | |
) | |
runapp() | |
# - | |