SquadDetective / app.py
Brasd99's picture
Code optimization
92629f4
import json
import zipfile
import numpy as np
import cv2
import os
import gradio as gr
from deepface import DeepFace
from ultralytics import YOLO
import urllib.request
import asyncio
with open('config.json', 'r') as f:
config = json.load(f)
FACE_DIST_TRESH = config['FACE_DIST_TRESH']
FACE_DET_TRESH = config['FACE_DET_TRESH']
YOLO_WEIGHTS_URL = config['YOLO_WEIGHTS_URL']
yolo_weights_filename = os.path.basename(YOLO_WEIGHTS_URL)
if not os.path.exists(yolo_weights_filename):
urllib.request.urlretrieve(YOLO_WEIGHTS_URL, yolo_weights_filename)
model = YOLO(yolo_weights_filename)
async def find_distance(base_face, check_face):
result = await asyncio.to_thread(DeepFace.verify, base_face, check_face, enforce_detection=False)
return result['distance']
def find_faces(image):
outputs = model(image)
faces = []
for box in outputs[0].boxes:
if float(box.conf) >= FACE_DET_TRESH:
x, y, w, h = [int(coord) for coord in box.xywh[0]]
x_center, y_center = x + w / 2, y + h / 2
x1 = int(x_center - w)
y1 = int(y_center - h)
crop_img = image[y1:y1+h, x1:x1+w]
faces.append(crop_img)
return faces
async def load_images_from_zip(zip_path):
images = []
loop = asyncio.get_running_loop()
with zipfile.ZipFile(zip_path, 'r') as zip_file:
for file_name in zip_file.namelist():
with zip_file.open(file_name) as file:
img_bytes = await loop.run_in_executor(None, file.read)
img = cv2.imdecode(np.frombuffer(img_bytes, np.uint8), cv2.IMREAD_COLOR)
if img is not None:
images.append(img)
return images
def create_image(images):
table_width = 800
row_height = 100
margin = 10
text_margin = 20
id_col_width = 100
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
color = (255, 255, 255)
thickness = 2
table_height = text_margin + margin + (row_height + margin) * len(images)
table = np.zeros((table_height, table_width, 3), np.uint8)
id_x = 10
img_x = id_col_width + 10
y = text_margin
cv2.putText(table, 'Image ID', (id_x, y), font, font_scale, color, thickness)
cv2.putText(table, 'Face', (img_x, y), font, font_scale, color, thickness)
y += margin
for i, img in enumerate(images):
height, width = img.shape[:2]
new_width = int(width * row_height / height)
if img_x + new_width > table_width:
new_width = table_width - img_x
img_resized = cv2.resize(img, (new_width, row_height))
cv2.putText(table, str(i), (id_x, y + margin), font, font_scale, color, thickness)
table[y:y+row_height, img_x:img_x+new_width] = img_resized
y += row_height + margin
for col in range(table.shape[1]-1, -1, -1):
if not np.any(table[:, col]):
continue
else:
break
table_cropped = table[:, :col+1+id_x]
return table_cropped
async def process_photo_async(photo, input_avatars_faces):
not_found_faces = []
avatars_faces_count = len(input_avatars_faces)
input_faces = find_faces(photo)
for input_face in input_faces:
for i in range(avatars_faces_count):
distance = await find_distance(input_avatars_faces[i], input_face)
if distance <= FACE_DIST_TRESH:
break
elif i + 1 == avatars_faces_count:
not_found_faces.append(input_face)
return not_found_faces
async def check_async(photos, input_avatars_faces, progress):
tasks = []
not_found_faces = []
for photo in photos:
task = asyncio.create_task(process_photo_async(photo, input_avatars_faces))
tasks.append(task)
for i, task in enumerate(tasks):
result = await task
not_found_faces += result
progress((i+1)/len(tasks))
return not_found_faces
def check(avatars_zip, photos_zip, progress=gr.Progress()):
avatars = asyncio.run(load_images_from_zip(avatars_zip.name))
avatars = [cv2.cvtColor(avatar, cv2.COLOR_RGB2BGR) for avatar in avatars]
photos = asyncio.run(load_images_from_zip(photos_zip.name))
photos = [cv2.cvtColor(photo, cv2.COLOR_RGB2BGR) for photo in photos]
input_avatars_faces = [find_faces(avatar) for avatar in avatars]
input_avatars_faces = [face for faces in input_avatars_faces for face in faces]
not_found_faces = asyncio.run(check_async(photos, input_avatars_faces, progress))
return create_image(not_found_faces)
title = '<h1 style="text-align:center">SquadDetective</h1>'
logo = '<center><img src="https://i.ibb.co/C0BH40g/logo.png" width="300" height="300" alt="SquadDetective logo"></center>'
with gr.Blocks(theme='soft', title='SquadDetective') as blocks:
gr.HTML(title)
gr.HTML(logo)
gr.Markdown('**SquadDetective** is a service that helps sports teams to identify unclaimed players by comparing their faces to photos taken during matches. By using state-of-the-art facial recognition technology, this service can quickly and accurately match the faces of players in photos to a database of registered players, allowing teams to quickly identify any unclaimed players and take appropriate action. With **SquadDetective**, sports teams can ensure that all players are properly registered and eligible to play, helping to avoid potential penalties and other issues.')
with gr.Row():
avatars = gr.inputs.File(label='Avatar photos (zip)')
photos = gr.inputs.File(label='Photos to be processed (zip)')
inputs = [avatars, photos]
process_button = gr.Button('Process')
outputs=gr.outputs.Image(type='numpy', label='Report')
process_button.click(fn=check, inputs=inputs, outputs=outputs)
blocks.queue(concurrency_count=1).launch()