mms_benchmark / pages /1_Results.py
Szymon Woźniak
add results
abc36fe
raw
history blame
1.63 kB
import streamlit as st
import pandas as pd
import plotly.express as px
@st.cache_data
def get_results(experiment: str):
path = {
"linear": "data/f1_linear.parquet",
"bilstm": "data/f1_bilstm.parquet",
"finetuning": "data/f1_finetuning.parquet",
}[experiment]
df = pd.read_parquet(path)
df = (df * 100).astype(int)
return df
TITLE = "F1 Macro scores"
st.set_page_config(page_title=TITLE, page_icon="📈")
st.markdown(f"# {TITLE}")
st.write(
"""TODO: Description"""
)
df_linear = get_results("linear")
df_linear["Experiment"] = "Linear Head"
df_bilstm = get_results("bilstm")
df_bilstm["Experiment"] = "BiLSTM Head"
df_finetuning = get_results("finetuning")
df_finetuning["Experiment"] = "Fine-tuning"
color_range_low = 40
color_range_high = 75
st.plotly_chart(
px.imshow(
df_linear,
title="Linear Head",
labels=dict(x="Language", y="Model", color="F1 Score"),
color_continuous_scale="viridis",
range_color=[color_range_low, color_range_high],
text_auto=True,
)
)
st.plotly_chart(
px.imshow(
df_bilstm,
title="BiLSTM Head",
labels=dict(x="Language", y="Model", color="F1 Score"),
color_continuous_scale="viridis",
range_color=[color_range_low, color_range_high],
text_auto=True,
)
)
st.plotly_chart(
px.imshow(
df_finetuning,
title="Fine-tuning",
labels=dict(x="Language", y="Model", color="F1 Score"),
color_continuous_scale="viridis",
range_color=[color_range_low, color_range_high],
text_auto=True,
)
)