Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,39 +13,31 @@ from llama_index.core.chat_engine.condense_plus_context import CondensePlusConte
|
|
| 13 |
from llama_index.core.schema import Document
|
| 14 |
|
| 15 |
# ===================================
|
| 16 |
-
# 1οΈβ£ Fungsi untuk Membaca Google Spreadsheet
|
| 17 |
# ===================================
|
| 18 |
-
def
|
| 19 |
try:
|
| 20 |
-
# Tentukan scope akses ke Google Sheets & Drive
|
| 21 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
| 22 |
-
|
| 23 |
-
# Load kredensial dari file credentials.json
|
| 24 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
| 25 |
client = gspread.authorize(creds)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
SHEET_NAME = "datatarget" # πΉ Ganti dengan nama sheet
|
| 30 |
|
| 31 |
-
|
| 32 |
spreadsheet = client.open_by_key(SPREADSHEET_ID)
|
| 33 |
-
sheet = spreadsheet.worksheet(SHEET_NAME)
|
| 34 |
-
|
| 35 |
-
# Ambil semua data dalam bentuk list (baris & kolom)
|
| 36 |
-
data = sheet.get_all_values()
|
| 37 |
-
|
| 38 |
-
# Format ulang data menjadi satu teks panjang (dapat disesuaikan)
|
| 39 |
-
formatted_text = "\n".join([" | ".join(row) for row in data])
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
return f"β ERROR: {str(e)}"
|
| 51 |
|
|
@@ -54,8 +46,8 @@ def read_google_sheet():
|
|
| 54 |
# ===================================
|
| 55 |
def initialize_llama_model():
|
| 56 |
model_path = hf_hub_download(
|
| 57 |
-
repo_id="TheBLoke/zephyr-7b-beta-GGUF",
|
| 58 |
-
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
| 59 |
cache_dir="./models"
|
| 60 |
)
|
| 61 |
return model_path
|
|
@@ -73,22 +65,16 @@ def initialize_settings(model_path):
|
|
| 73 |
# 4οΈβ£ Inisialisasi Index dari Data Spreadsheet
|
| 74 |
# ===================================
|
| 75 |
def initialize_index():
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
document = Document(text=text_data) # πΉ Ubah teks menjadi objek `Document`
|
| 81 |
-
documents = [document] # πΉ Masukkan ke dalam list
|
| 82 |
-
|
| 83 |
-
# πΉ Proses data menjadi node untuk vektor embedding
|
| 84 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
| 85 |
-
nodes = parser.get_nodes_from_documents(documents)
|
| 86 |
-
|
| 87 |
-
# πΉ Gunakan model embedding
|
| 88 |
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 89 |
Settings.embed_model = embedding
|
| 90 |
-
|
| 91 |
-
# πΉ Buat index vektor
|
| 92 |
index = VectorStoreIndex(nodes)
|
| 93 |
return index
|
| 94 |
|
|
@@ -110,23 +96,20 @@ def generate_response(message, history, chat_engine):
|
|
| 110 |
if history is None:
|
| 111 |
history = []
|
| 112 |
|
| 113 |
-
|
| 114 |
-
text_data = read_google_sheet()
|
| 115 |
document = Document(text=text_data)
|
| 116 |
documents = [document]
|
| 117 |
-
|
| 118 |
-
# πΉ Perbarui index dengan data terbaru
|
| 119 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
| 120 |
nodes = parser.get_nodes_from_documents(documents)
|
| 121 |
index = VectorStoreIndex(nodes)
|
| 122 |
retriever = index.as_retriever(similarity_top_k=3)
|
| 123 |
-
|
| 124 |
-
# πΉ Buat ulang chat engine dengan index yang diperbarui
|
| 125 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
| 126 |
retriever=retriever,
|
| 127 |
verbose=True,
|
| 128 |
)
|
| 129 |
-
|
| 130 |
chat_messages = [
|
| 131 |
ChatMessage(
|
| 132 |
role="system",
|
|
@@ -138,11 +121,10 @@ def generate_response(message, history, chat_engine):
|
|
| 138 |
"Fokuslah memberikan jawaban yang akurat dan relevan sesuai dengan dokumen yang tersedia."
|
| 139 |
),
|
| 140 |
]
|
| 141 |
-
|
| 142 |
-
# πΉ Gunakan chat engine baru untuk menjawab pertanyaan
|
| 143 |
response = chat_engine.stream_chat(message)
|
| 144 |
text = "".join(response.response_gen)
|
| 145 |
-
|
| 146 |
history.append((message, text))
|
| 147 |
return history
|
| 148 |
|
|
|
|
| 13 |
from llama_index.core.schema import Document
|
| 14 |
|
| 15 |
# ===================================
|
| 16 |
+
# 1οΈβ£ Fungsi untuk Membaca Google Spreadsheet dari Beberapa Worksheet
|
| 17 |
# ===================================
|
| 18 |
+
def read_google_sheets():
|
| 19 |
try:
|
|
|
|
| 20 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
|
|
|
|
|
|
| 21 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
| 22 |
client = gspread.authorize(creds)
|
| 23 |
|
| 24 |
+
SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
|
| 25 |
+
sheet_names = ["datatarget", "dataabsen", "datacuti", "datalembur"] # πΉ Daftar sheet yang akan dibaca
|
|
|
|
| 26 |
|
| 27 |
+
combined_text = ""
|
| 28 |
spreadsheet = client.open_by_key(SPREADSHEET_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
for sheet_name in sheet_names:
|
| 31 |
+
try:
|
| 32 |
+
sheet = spreadsheet.worksheet(sheet_name)
|
| 33 |
+
data = sheet.get_all_values()
|
| 34 |
+
formatted_text = f"\n=== Data dari {sheet_name} ===\n"
|
| 35 |
+
formatted_text += "\n".join([" | ".join(row) for row in data])
|
| 36 |
+
combined_text += formatted_text + "\n"
|
| 37 |
+
except gspread.exceptions.WorksheetNotFound:
|
| 38 |
+
combined_text += f"\nβ ERROR: Worksheet '{sheet_name}' tidak ditemukan!\n"
|
| 39 |
+
|
| 40 |
+
return combined_text.strip()
|
| 41 |
except Exception as e:
|
| 42 |
return f"β ERROR: {str(e)}"
|
| 43 |
|
|
|
|
| 46 |
# ===================================
|
| 47 |
def initialize_llama_model():
|
| 48 |
model_path = hf_hub_download(
|
| 49 |
+
repo_id="TheBLoke/zephyr-7b-beta-GGUF",
|
| 50 |
+
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
| 51 |
cache_dir="./models"
|
| 52 |
)
|
| 53 |
return model_path
|
|
|
|
| 65 |
# 4οΈβ£ Inisialisasi Index dari Data Spreadsheet
|
| 66 |
# ===================================
|
| 67 |
def initialize_index():
|
| 68 |
+
text_data = read_google_sheets()
|
| 69 |
+
document = Document(text=text_data)
|
| 70 |
+
documents = [document]
|
| 71 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
| 73 |
+
nodes = parser.get_nodes_from_documents(documents)
|
| 74 |
+
|
|
|
|
| 75 |
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 76 |
Settings.embed_model = embedding
|
| 77 |
+
|
|
|
|
| 78 |
index = VectorStoreIndex(nodes)
|
| 79 |
return index
|
| 80 |
|
|
|
|
| 96 |
if history is None:
|
| 97 |
history = []
|
| 98 |
|
| 99 |
+
text_data = read_google_sheets()
|
|
|
|
| 100 |
document = Document(text=text_data)
|
| 101 |
documents = [document]
|
| 102 |
+
|
|
|
|
| 103 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
| 104 |
nodes = parser.get_nodes_from_documents(documents)
|
| 105 |
index = VectorStoreIndex(nodes)
|
| 106 |
retriever = index.as_retriever(similarity_top_k=3)
|
| 107 |
+
|
|
|
|
| 108 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
| 109 |
retriever=retriever,
|
| 110 |
verbose=True,
|
| 111 |
)
|
| 112 |
+
|
| 113 |
chat_messages = [
|
| 114 |
ChatMessage(
|
| 115 |
role="system",
|
|
|
|
| 121 |
"Fokuslah memberikan jawaban yang akurat dan relevan sesuai dengan dokumen yang tersedia."
|
| 122 |
),
|
| 123 |
]
|
| 124 |
+
|
|
|
|
| 125 |
response = chat_engine.stream_chat(message)
|
| 126 |
text = "".join(response.response_gen)
|
| 127 |
+
|
| 128 |
history.append((message, text))
|
| 129 |
return history
|
| 130 |
|