Spaces:
Sleeping
Sleeping
Create fusion.py
Browse files- core/fusion.py +22 -0
core/fusion.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
|
| 3 |
+
# judge_score is 1..5 (int). nlp_subscore is 0..1. alpha in [0,1]
|
| 4 |
+
|
| 5 |
+
def fuse_metric(judge_score, nlp_subscore: float, alpha: float) -> float:
|
| 6 |
+
js = 0.0
|
| 7 |
+
if judge_score is not None:
|
| 8 |
+
try:
|
| 9 |
+
js = max(0.0, min(1.0, float(judge_score) / 5.0))
|
| 10 |
+
except Exception:
|
| 11 |
+
js = 0.0
|
| 12 |
+
ns = max(0.0, min(1.0, float(nlp_subscore)))
|
| 13 |
+
fused_0_1 = alpha * js + (1 - alpha) * ns
|
| 14 |
+
return round(fused_0_1 * 10.0, 2)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def weighted_total(metric_scores_0_10: Dict[str, float], weights: Dict[str, float]) -> float:
|
| 18 |
+
tot = 0.0
|
| 19 |
+
for k, v in metric_scores_0_10.items():
|
| 20 |
+
w = weights.get(k, 0.0)
|
| 21 |
+
tot += (v or 0.0) * w
|
| 22 |
+
return round(tot, 2)
|