Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, List, Optional, Union | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
from src.attention_garm import JointTransformerBlock | |
from src.attention_processor_garm import Attention, AttentionProcessor, FusedJointAttnProcessor2_0 | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormContinuous | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
""" | |
The Transformer model introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
sample_size (`int`): The width of the latent images. This is fixed during training since | |
it is used to learn a number of position embeddings. | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
out_channels (`int`, defaults to 16): Number of output channels. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: int = 128, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
num_layers: int = 18, | |
attention_head_dim: int = 64, | |
num_attention_heads: int = 18, | |
joint_attention_dim: int = 4096, | |
caption_projection_dim: int = 1152, | |
pooled_projection_dim: int = 2048, | |
out_channels: int = 16, | |
pos_embed_max_size: int = 96, | |
): | |
super().__init__() | |
default_out_channels = in_channels | |
self.out_channels = out_channels if out_channels is not None else default_out_channels | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
self.pos_embed = PatchEmbed( | |
height=self.config.sample_size, | |
width=self.config.sample_size, | |
patch_size=self.config.patch_size, | |
in_channels=self.config.in_channels, | |
embed_dim=self.inner_dim, | |
pos_embed_max_size=pos_embed_max_size, # hard-code for now. | |
) | |
self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) | |
# `attention_head_dim` is doubled to account for the mixing. | |
# It needs to crafted when we get the actual checkpoints. | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
JointTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
context_pre_only=i == num_layers - 1, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking | |
def disable_forward_chunking(self): | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, None, 0) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedJointAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
pooled_projections: torch.FloatTensor = None, | |
timestep: torch.LongTensor = None, | |
block_controlnet_hidden_states: List = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`SD3Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
ref_key = [] | |
ref_value = [] | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
height, width = hidden_states.shape[-2:] | |
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. | |
temb = self.time_text_embed(timestep, pooled_projections) | |
# encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
ref_key, | |
ref_value, | |
**ckpt_kwargs, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, ref_key=ref_key, ref_value=ref_value | |
) | |
# controlnet residual | |
if block_controlnet_hidden_states is not None and block.context_pre_only is False: | |
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states) | |
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control] | |
hidden_states = self.norm_out(hidden_states, temb) | |
hidden_states = self.proj_out(hidden_states) | |
# unpatchify | |
patch_size = self.config.patch_size | |
height = height // patch_size | |
width = width // patch_size | |
hidden_states = hidden_states.reshape( | |
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) | |
) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,ref_key, ref_value) | |
return Transformer2DModelOutput(sample=output) | |