Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,7 @@ from ultralytics import YOLOv10
|
|
3 |
import supervision as sv
|
4 |
import spaces
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
|
7 |
-
import tempfile
|
8 |
|
9 |
def download_models(model_id):
|
10 |
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
@@ -30,9 +29,9 @@ category_dict = {
|
|
30 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
31 |
}
|
32 |
|
|
|
33 |
@spaces.GPU(duration=200)
|
34 |
-
def yolov10_inference(
|
35 |
-
image, model_id, image_size, conf_threshold, iou_threshold = inputs[1], inputs[2], inputs[3], inputs[4], inputs[5]
|
36 |
model_path = download_models(model_id)
|
37 |
model = YOLOv10(model_path)
|
38 |
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
@@ -46,56 +45,12 @@ def yolov10_inference(inputs):
|
|
46 |
|
47 |
return annotated_image
|
48 |
|
49 |
-
def yolov10_video_inference(inputs):
|
50 |
-
video, model_id, image_size, conf_threshold, iou_threshold = inputs[2], inputs[3], inputs[4], inputs[5], inputs[6]
|
51 |
-
model_path = download_models(model_id)
|
52 |
-
model = YOLOv10(model_path)
|
53 |
-
|
54 |
-
cap = cv2.VideoCapture(video)
|
55 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
56 |
-
out = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
57 |
-
out_path = out.name
|
58 |
-
|
59 |
-
ret, frame = cap.read()
|
60 |
-
height, width, _ = frame.shape
|
61 |
-
writer = cv2.VideoWriter(out_path, fourcc, 30, (width, height))
|
62 |
-
|
63 |
-
while ret:
|
64 |
-
results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
65 |
-
detections = sv.Detections.from_ultralytics(results)
|
66 |
-
|
67 |
-
labels = [
|
68 |
-
f"{category_dict[class_id]} {confidence:.2f}"
|
69 |
-
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
70 |
-
]
|
71 |
-
annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
|
72 |
-
|
73 |
-
writer.write(annotated_frame)
|
74 |
-
ret, frame = cap.read()
|
75 |
-
|
76 |
-
cap.release()
|
77 |
-
writer.release()
|
78 |
-
|
79 |
-
return out_path
|
80 |
-
|
81 |
def app():
|
82 |
with gr.Blocks():
|
83 |
with gr.Row():
|
84 |
with gr.Column():
|
85 |
-
|
86 |
-
|
87 |
-
choices=["Image", "Video"],
|
88 |
-
value="Image",
|
89 |
-
)
|
90 |
-
image = gr.Image(type="numpy", label="Image", visible=True)
|
91 |
-
video = gr.Video(label="Video", visible=False)
|
92 |
-
|
93 |
-
image_or_video.change(
|
94 |
-
lambda x: (gr.update(visible=x=="Image"), gr.update(visible=x=="Video")),
|
95 |
-
inputs=[image_or_video],
|
96 |
-
outputs=[image, video],
|
97 |
-
)
|
98 |
-
|
99 |
model_id = gr.Dropdown(
|
100 |
label="Model",
|
101 |
choices=[
|
@@ -132,79 +87,53 @@ def app():
|
|
132 |
yolov10_infer = gr.Button(value="Detect Objects")
|
133 |
|
134 |
with gr.Column():
|
135 |
-
output_image = gr.Image(type="numpy", label="Annotated Image"
|
136 |
-
output_video = gr.Video(label="Annotated Video", visible=False)
|
137 |
-
|
138 |
-
def process_inputs(inputs):
|
139 |
-
if inputs[0] == "Image":
|
140 |
-
return yolov10_inference(inputs)
|
141 |
-
else:
|
142 |
-
return yolov10_video_inference(inputs)
|
143 |
|
144 |
yolov10_infer.click(
|
145 |
-
fn=
|
146 |
inputs=[
|
147 |
-
image_or_video,
|
148 |
image,
|
149 |
-
video,
|
150 |
model_id,
|
151 |
image_size,
|
152 |
conf_threshold,
|
153 |
iou_threshold,
|
154 |
],
|
155 |
-
outputs=[output_image
|
156 |
)
|
157 |
|
158 |
gr.Examples(
|
159 |
examples=[
|
160 |
[
|
161 |
-
"Image",
|
162 |
"Animals_persones.jpg",
|
163 |
-
None,
|
164 |
"yolov10x.pt",
|
165 |
640,
|
166 |
0.25,
|
167 |
0.45,
|
168 |
],
|
169 |
[
|
170 |
-
"Image",
|
171 |
"collage-horses-other-pets-white.jpg",
|
172 |
-
None,
|
173 |
"yolov10m.pt",
|
174 |
640,
|
175 |
0.25,
|
176 |
0.45,
|
177 |
],
|
178 |
[
|
179 |
-
"Image",
|
180 |
"Ville.png",
|
181 |
-
None,
|
182 |
"yolov10b.pt",
|
183 |
640,
|
184 |
0.25,
|
185 |
0.45,
|
186 |
],
|
187 |
-
[
|
188 |
-
"Video",
|
189 |
-
None,
|
190 |
-
"sample_video.mp4",
|
191 |
-
"yolov10m.pt",
|
192 |
-
640,
|
193 |
-
0.25,
|
194 |
-
0.45,
|
195 |
-
],
|
196 |
],
|
197 |
-
fn=
|
198 |
inputs=[
|
199 |
-
image_or_video,
|
200 |
image,
|
201 |
-
video,
|
202 |
model_id,
|
203 |
image_size,
|
204 |
conf_threshold,
|
205 |
iou_threshold,
|
206 |
],
|
207 |
-
outputs=[output_image
|
208 |
cache_examples=True,
|
209 |
)
|
210 |
|
@@ -227,4 +156,4 @@ with gradio_app:
|
|
227 |
with gr.Column():
|
228 |
app()
|
229 |
|
230 |
-
gradio_app.launch(debug=True)
|
|
|
3 |
import supervision as sv
|
4 |
import spaces
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
|
|
|
7 |
|
8 |
def download_models(model_id):
|
9 |
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
|
|
29 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
30 |
}
|
31 |
|
32 |
+
|
33 |
@spaces.GPU(duration=200)
|
34 |
+
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
|
|
35 |
model_path = download_models(model_id)
|
36 |
model = YOLOv10(model_path)
|
37 |
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
|
|
45 |
|
46 |
return annotated_image
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def app():
|
49 |
with gr.Blocks():
|
50 |
with gr.Row():
|
51 |
with gr.Column():
|
52 |
+
image = gr.Image(type="numpy", label="Image")
|
53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
model_id = gr.Dropdown(
|
55 |
label="Model",
|
56 |
choices=[
|
|
|
87 |
yolov10_infer = gr.Button(value="Detect Objects")
|
88 |
|
89 |
with gr.Column():
|
90 |
+
output_image = gr.Image(type="numpy", label="Annotated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
yolov10_infer.click(
|
93 |
+
fn=yolov10_inference,
|
94 |
inputs=[
|
|
|
95 |
image,
|
|
|
96 |
model_id,
|
97 |
image_size,
|
98 |
conf_threshold,
|
99 |
iou_threshold,
|
100 |
],
|
101 |
+
outputs=[output_image],
|
102 |
)
|
103 |
|
104 |
gr.Examples(
|
105 |
examples=[
|
106 |
[
|
|
|
107 |
"Animals_persones.jpg",
|
|
|
108 |
"yolov10x.pt",
|
109 |
640,
|
110 |
0.25,
|
111 |
0.45,
|
112 |
],
|
113 |
[
|
|
|
114 |
"collage-horses-other-pets-white.jpg",
|
|
|
115 |
"yolov10m.pt",
|
116 |
640,
|
117 |
0.25,
|
118 |
0.45,
|
119 |
],
|
120 |
[
|
|
|
121 |
"Ville.png",
|
|
|
122 |
"yolov10b.pt",
|
123 |
640,
|
124 |
0.25,
|
125 |
0.45,
|
126 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
],
|
128 |
+
fn=yolov10_inference,
|
129 |
inputs=[
|
|
|
130 |
image,
|
|
|
131 |
model_id,
|
132 |
image_size,
|
133 |
conf_threshold,
|
134 |
iou_threshold,
|
135 |
],
|
136 |
+
outputs=[output_image],
|
137 |
cache_examples=True,
|
138 |
)
|
139 |
|
|
|
156 |
with gr.Column():
|
157 |
app()
|
158 |
|
159 |
+
gradio_app.launch(debug=True)
|