Spaces:
Runtime error
Runtime error
Commit
·
77c6c52
1
Parent(s):
091b1e0
initinal
Browse files- README.md +3 -0
- denoisers/SpectralGating.py +0 -1
- evaluation.py +8 -8
README.md
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
| Attempt | #1 | #2 |
|
2 |
| :---: | :---: | :---: |
|
3 |
| Seconds | 301 | 283 |
|
|
|
|
|
|
|
|
1 |
| Attempt | #1 | #2 |
|
2 |
| :---: | :---: | :---: |
|
3 |
| Seconds | 301 | 283 |
|
4 |
+
|
5 |
+
Metrics on valentini dataset with baseline = {'PESQ': 1.5693, 'STOI': 0.9504}
|
6 |
+
Metrics on valentini dataset with ideal denoising = {'PESQ': 1.9709, 'STOI': 0.9211}
|
denoisers/SpectralGating.py
CHANGED
@@ -4,7 +4,6 @@ import torchaudio
|
|
4 |
|
5 |
|
6 |
class SpectralGating(torch.nn.Module):
|
7 |
-
"""example: wav_noisy = '/media/public/datasets/denoising/DS_10283_2791/noisy_trainset_56spk_wav/p312_002.wav' """
|
8 |
def __init__(self, rate=16000):
|
9 |
super(SpectralGating, self).__init__()
|
10 |
self.rate = rate
|
|
|
4 |
|
5 |
|
6 |
class SpectralGating(torch.nn.Module):
|
|
|
7 |
def __init__(self, rate=16000):
|
8 |
super(SpectralGating, self).__init__()
|
9 |
self.rate = rate
|
evaluation.py
CHANGED
@@ -15,8 +15,9 @@ MODELS = {
|
|
15 |
|
16 |
|
17 |
|
18 |
-
def evaluate_on_dataset(model_name, dataset_path, dataset_type
|
19 |
-
|
|
|
20 |
parser = PARSERS[dataset_type]
|
21 |
clean_wavs, noisy_wavs = parser(dataset_path)
|
22 |
|
@@ -25,10 +26,11 @@ def evaluate_on_dataset(model_name, dataset_path, dataset_type, ideal):
|
|
25 |
for clean_path, noisy_path in tqdm(zip(clean_wavs, noisy_wavs), total=len(clean_wavs)):
|
26 |
clean_wav = load_wav(clean_path)
|
27 |
noisy_wav = load_wav(noisy_path)
|
28 |
-
|
29 |
-
if
|
30 |
scores = metrics.calculate(noisy_wav, clean_wav)
|
31 |
else:
|
|
|
32 |
scores = metrics.calculate(noisy_wav, denoised_wav)
|
33 |
|
34 |
mean_scores['PESQ'] += scores['PESQ']
|
@@ -49,14 +51,12 @@ if __name__ == '__main__':
|
|
49 |
choices=['valentini'])
|
50 |
parser.add_argument('--model_name', type=str,
|
51 |
choices=['baseline'])
|
52 |
-
|
53 |
-
help="Evaluate metrics on testing data with ideal denoising")
|
54 |
|
55 |
args = parser.parse_args()
|
56 |
|
57 |
mean_scores = evaluate_on_dataset(model_name=args.model_name,
|
58 |
dataset_path=args.dataset_path,
|
59 |
-
dataset_type=args.dataset_type
|
60 |
-
ideal=args.ideal)
|
61 |
print(f"Metrics on {args.dataset_type} dataset with "
|
62 |
f"{args.model_name if args.model_name is not None else 'ideal denoising'} = {mean_scores}")
|
|
|
15 |
|
16 |
|
17 |
|
18 |
+
def evaluate_on_dataset(model_name, dataset_path, dataset_type):
|
19 |
+
if model_name is not None:
|
20 |
+
model = MODELS[model_name]()
|
21 |
parser = PARSERS[dataset_type]
|
22 |
clean_wavs, noisy_wavs = parser(dataset_path)
|
23 |
|
|
|
26 |
for clean_path, noisy_path in tqdm(zip(clean_wavs, noisy_wavs), total=len(clean_wavs)):
|
27 |
clean_wav = load_wav(clean_path)
|
28 |
noisy_wav = load_wav(noisy_path)
|
29 |
+
|
30 |
+
if model_name is None:
|
31 |
scores = metrics.calculate(noisy_wav, clean_wav)
|
32 |
else:
|
33 |
+
denoised_wav = model(noisy_wav)
|
34 |
scores = metrics.calculate(noisy_wav, denoised_wav)
|
35 |
|
36 |
mean_scores['PESQ'] += scores['PESQ']
|
|
|
51 |
choices=['valentini'])
|
52 |
parser.add_argument('--model_name', type=str,
|
53 |
choices=['baseline'])
|
54 |
+
|
|
|
55 |
|
56 |
args = parser.parse_args()
|
57 |
|
58 |
mean_scores = evaluate_on_dataset(model_name=args.model_name,
|
59 |
dataset_path=args.dataset_path,
|
60 |
+
dataset_type=args.dataset_type)
|
|
|
61 |
print(f"Metrics on {args.dataset_type} dataset with "
|
62 |
f"{args.model_name if args.model_name is not None else 'ideal denoising'} = {mean_scores}")
|