|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
class PlainCNNEncoder(nn.Module): |
|
def __init__(self, in_dim: int = 3): |
|
super(PlainCNNEncoder, self).__init__() |
|
|
|
self.in_dim = in_dim |
|
|
|
self.in_fc = nn.Conv2d(in_channels=in_dim, out_channels=16, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
self.act0 = nn.ReLU(inplace=True) |
|
|
|
self.down1 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=2, stride=2) |
|
self.conv1 = nn.Conv2d(in_channels=16, out_channels=16, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
self.act1 = nn.ReLU(inplace=True) |
|
|
|
self.down2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=2, stride=2) |
|
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
self.act2 = nn.ReLU(inplace=True) |
|
|
|
self.out_fc = nn.Conv2d(in_channels=32, out_channels=32, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
|
|
@property |
|
def hidden_dim(self): |
|
return 32 |
|
|
|
def forward(self, x): |
|
x = self.in_fc(x) |
|
x = self.act0(x) |
|
|
|
x = self.down1(x) |
|
x = self.conv1(x) |
|
x = self.act1(x) |
|
|
|
x = self.down2(x) |
|
x = self.conv2(x) |
|
x = self.act2(x) |
|
|
|
x = self.out_fc(x) |
|
return x |
|
|
|
class PlainCNNDecoder(nn.Module): |
|
def __init__(self, out_dim: int = 3): |
|
super(PlainCNNDecoder, self).__init__() |
|
self.out_dim = out_dim |
|
|
|
self.in_fc = nn.Conv2d(in_channels=32, out_channels=32, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
|
|
self.act1 = nn.ReLU(inplace=True) |
|
self.up1 = nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=2, stride=2) |
|
self.conv1 = nn.Conv2d(in_channels=16, out_channels=16, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
|
|
self.act2 = nn.ReLU(inplace=True) |
|
self.up2 = nn.ConvTranspose2d(in_channels=16, out_channels=16, kernel_size=2, stride=2) |
|
self.conv2 = nn.Conv2d(in_channels=16, out_channels=16, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
|
|
self.act3 = nn.ReLU(inplace=True) |
|
self.out_fc = nn.Conv2d(in_channels=16, out_channels=out_dim, |
|
kernel_size=3, stride=1, padding=1, bias=True) |
|
|
|
@property |
|
def hidden_dim(self): |
|
return 32 |
|
|
|
def forward(self, x): |
|
x = self.in_fc(x) |
|
|
|
x = self.act1(x) |
|
x = self.up1(x) |
|
x = self.conv1(x) |
|
|
|
x = self.act2(x) |
|
x = self.up2(x) |
|
x = self.conv2(x) |
|
|
|
x = self.act3(x) |
|
x = self.out_fc(x) |
|
return x |