Borcherding commited on
Commit
9102b04
·
verified ·
1 Parent(s): 9f2a895

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -18
app.py CHANGED
@@ -1,9 +1,7 @@
1
  import gradio as gr
2
  import numpy as np
3
-
4
  import spaces
5
  import torch
6
- import spaces
7
  import random
8
 
9
  from diffusers import FluxControlPipeline, FluxTransformer2DModel
@@ -15,8 +13,25 @@ MAX_IMAGE_SIZE = 2048
15
  pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")
16
  processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  @spaces.GPU
19
- def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
 
20
 
21
  if randomize_seed:
22
  seed = random.randint(0, MAX_SEED)
@@ -32,12 +47,6 @@ def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, heig
32
  generator=torch.Generator().manual_seed(seed),
33
  ).images[0]
34
  return image, seed
35
-
36
- examples = [
37
- "a tiny astronaut hatching from an egg on the moon",
38
- "a cat holding a sign that says hello world",
39
- "an anime illustration of a wiener schnitzel",
40
- ]
41
 
42
  css="""
43
  #col-container {
@@ -49,14 +58,24 @@ css="""
49
  with gr.Blocks(css=css) as demo:
50
 
51
  with gr.Column(elem_id="col-container"):
52
- gr.Markdown(f"""# FLUX.1 Depth [dev]
53
  12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
54
  [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
55
  """)
56
 
 
 
 
 
 
 
 
 
 
 
 
57
  control_image = gr.Image(label="Upload the image for control", type="pil")
58
  with gr.Row():
59
-
60
  prompt = gr.Text(
61
  label="Prompt",
62
  show_label=False,
@@ -64,13 +83,11 @@ with gr.Blocks(css=css) as demo:
64
  placeholder="Enter your prompt",
65
  container=False,
66
  )
67
-
68
  run_button = gr.Button("Run", scale=0)
69
 
70
  result = gr.Image(label="Result", show_label=False)
71
 
72
  with gr.Accordion("Advanced Settings", open=False):
73
-
74
  seed = gr.Slider(
75
  label="Seed",
76
  minimum=0,
@@ -82,7 +99,6 @@ with gr.Blocks(css=css) as demo:
82
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
83
 
84
  with gr.Row():
85
-
86
  width = gr.Slider(
87
  label="Width",
88
  minimum=256,
@@ -100,7 +116,6 @@ with gr.Blocks(css=css) as demo:
100
  )
101
 
102
  with gr.Row():
103
-
104
  guidance_scale = gr.Slider(
105
  label="Guidance Scale",
106
  minimum=1,
@@ -117,11 +132,24 @@ with gr.Blocks(css=css) as demo:
117
  value=28,
118
  )
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  gr.on(
121
  triggers=[run_button.click, prompt.submit],
122
- fn = infer,
123
- inputs = [control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
124
- outputs = [result, seed]
125
  )
126
 
127
  demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
 
3
  import spaces
4
  import torch
 
5
  import random
6
 
7
  from diffusers import FluxControlPipeline, FluxTransformer2DModel
 
13
  pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")
14
  processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
15
 
16
+ def load_lora(lora_path):
17
+ if not lora_path.strip():
18
+ return "Please provide a valid LoRA path"
19
+ try:
20
+ pipe.load_lora_weights(lora_path)
21
+ return f"Successfully loaded LoRA weights from {lora_path}"
22
+ except Exception as e:
23
+ return f"Error loading LoRA weights: {str(e)}"
24
+
25
+ def unload_lora():
26
+ try:
27
+ pipe.unload_lora_weights()
28
+ return "Successfully unloaded LoRA weights"
29
+ except Exception as e:
30
+ return f"Error unloading LoRA weights: {str(e)}"
31
+
32
  @spaces.GPU
33
+ def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
34
+ guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
35
 
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
 
47
  generator=torch.Generator().manual_seed(seed),
48
  ).images[0]
49
  return image, seed
 
 
 
 
 
 
50
 
51
  css="""
52
  #col-container {
 
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
+ gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support
62
  12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
63
  [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
64
  """)
65
 
66
+ # LoRA controls
67
+ with gr.Row():
68
+ lora_path = gr.Textbox(
69
+ label="HuggingFace LoRA Path",
70
+ placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees"
71
+ )
72
+ load_lora_btn = gr.Button("Load LoRA")
73
+ unload_lora_btn = gr.Button("Unload LoRA")
74
+
75
+ lora_status = gr.Textbox(label="LoRA Status", interactive=False)
76
+
77
  control_image = gr.Image(label="Upload the image for control", type="pil")
78
  with gr.Row():
 
79
  prompt = gr.Text(
80
  label="Prompt",
81
  show_label=False,
 
83
  placeholder="Enter your prompt",
84
  container=False,
85
  )
 
86
  run_button = gr.Button("Run", scale=0)
87
 
88
  result = gr.Image(label="Result", show_label=False)
89
 
90
  with gr.Accordion("Advanced Settings", open=False):
 
91
  seed = gr.Slider(
92
  label="Seed",
93
  minimum=0,
 
99
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
100
 
101
  with gr.Row():
 
102
  width = gr.Slider(
103
  label="Width",
104
  minimum=256,
 
116
  )
117
 
118
  with gr.Row():
 
119
  guidance_scale = gr.Slider(
120
  label="Guidance Scale",
121
  minimum=1,
 
132
  value=28,
133
  )
134
 
135
+ # Event handlers
136
+ load_lora_btn.click(
137
+ fn=load_lora,
138
+ inputs=[lora_path],
139
+ outputs=[lora_status]
140
+ )
141
+
142
+ unload_lora_btn.click(
143
+ fn=unload_lora,
144
+ inputs=[],
145
+ outputs=[lora_status]
146
+ )
147
+
148
  gr.on(
149
  triggers=[run_button.click, prompt.submit],
150
+ fn=infer,
151
+ inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
152
+ outputs=[result, seed]
153
  )
154
 
155
  demo.launch()