Delete app.py
Browse files
app.py
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
-
import os
|
4 |
-
import traceback
|
5 |
-
import pandas as pd
|
6 |
-
import torch
|
7 |
-
import gradio as gr
|
8 |
-
from transformers import (
|
9 |
-
logging,
|
10 |
-
AutoProcessor,
|
11 |
-
AutoTokenizer,
|
12 |
-
AutoModelForImageTextToText
|
13 |
-
)
|
14 |
-
from sklearn.model_selection import train_test_split
|
15 |
-
import gc
|
16 |
-
|
17 |
-
# βββ Silence irrelevant warnings βββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
-
logging.set_verbosity_error()
|
19 |
-
|
20 |
-
# βββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
22 |
-
if not HF_TOKEN:
|
23 |
-
raise RuntimeError("Missing HF_TOKEN in env vars β set it under Space Settings β Secrets")
|
24 |
-
MODEL_ID = "google/gemma-3n-e2b-it"
|
25 |
-
|
26 |
-
# βββ Fast startup: load only processor & tokenizer βββββββββββββββββββββββββββββ
|
27 |
-
processor = AutoProcessor.from_pretrained(
|
28 |
-
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
29 |
-
)
|
30 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
31 |
-
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
32 |
-
)
|
33 |
-
|
34 |
-
# βββ Heavy work runs on button click βββββββββββββββββββββββββββββββββββββββββββ
|
35 |
-
def generate_and_export():
|
36 |
-
try:
|
37 |
-
# 1) Lazyβload the full FP16 model
|
38 |
-
print("Loading model...")
|
39 |
-
model = AutoModelForImageTextToText.from_pretrained(
|
40 |
-
MODEL_ID,
|
41 |
-
trust_remote_code=True,
|
42 |
-
token=HF_TOKEN,
|
43 |
-
torch_dtype=torch.float16,
|
44 |
-
device_map="auto"
|
45 |
-
)
|
46 |
-
device = next(model.parameters()).device
|
47 |
-
print(f"Model loaded on device: {device}")
|
48 |
-
|
49 |
-
# 2) TextβDoctor Note helper
|
50 |
-
def generate_doctor_note() -> str:
|
51 |
-
prompt = """Generate a realistic, concise doctor's progress note for a single patient encounter.
|
52 |
-
Include patient symptoms, physical examination findings, and clinical observations.
|
53 |
-
Keep it brief and medical in nature.
|
54 |
-
|
55 |
-
Example format:
|
56 |
-
Patient presents with [symptoms]. Physical exam reveals [findings]. [Additional observations].
|
57 |
-
|
58 |
-
Doctor's Note:"""
|
59 |
-
|
60 |
-
inputs = processor.apply_chat_template(
|
61 |
-
[
|
62 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a medical assistant generating realistic patient encounter notes."}]},
|
63 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
64 |
-
],
|
65 |
-
add_generation_prompt=True,
|
66 |
-
tokenize=True,
|
67 |
-
return_tensors="pt",
|
68 |
-
return_dict=True
|
69 |
-
).to(device)
|
70 |
-
|
71 |
-
out = model.generate(
|
72 |
-
**inputs,
|
73 |
-
max_new_tokens=150,
|
74 |
-
do_sample=True,
|
75 |
-
top_p=0.9,
|
76 |
-
temperature=0.8,
|
77 |
-
repetition_penalty=1.2,
|
78 |
-
pad_token_id=processor.tokenizer.eos_token_id,
|
79 |
-
use_cache=False
|
80 |
-
)
|
81 |
-
prompt_len = inputs["input_ids"].shape[-1]
|
82 |
-
return processor.batch_decode(
|
83 |
-
out[:, prompt_len:], skip_special_tokens=True
|
84 |
-
)[0].strip()
|
85 |
-
|
86 |
-
# 3) Doctor NoteβSOAP helper
|
87 |
-
def convert_to_soap(doctor_note: str) -> str:
|
88 |
-
prompt = f"""Convert the following medical note into proper SOAP format.
|
89 |
-
|
90 |
-
Medical Note: {doctor_note}
|
91 |
-
|
92 |
-
Please structure your response exactly as follows:
|
93 |
-
|
94 |
-
SUBJECTIVE:
|
95 |
-
[Patient's reported symptoms, complaints, and history]
|
96 |
-
|
97 |
-
OBJECTIVE:
|
98 |
-
[Physical exam findings, vital signs, observable data]
|
99 |
-
|
100 |
-
ASSESSMENT:
|
101 |
-
[Clinical diagnosis, differential diagnosis, or impression]
|
102 |
-
|
103 |
-
PLAN:
|
104 |
-
[Treatment plan, medications, follow-up instructions]
|
105 |
-
|
106 |
-
SOAP Note:"""
|
107 |
-
|
108 |
-
inputs = processor.apply_chat_template(
|
109 |
-
[
|
110 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a medical documentation assistant. Convert medical notes into structured SOAP format. Be concise and clinical."}]},
|
111 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
112 |
-
],
|
113 |
-
add_generation_prompt=True,
|
114 |
-
tokenize=True,
|
115 |
-
return_tensors="pt",
|
116 |
-
return_dict=True
|
117 |
-
).to(device)
|
118 |
-
|
119 |
-
out = model.generate(
|
120 |
-
**inputs,
|
121 |
-
max_new_tokens=250,
|
122 |
-
do_sample=True,
|
123 |
-
top_p=0.9,
|
124 |
-
temperature=0.7,
|
125 |
-
repetition_penalty=1.3,
|
126 |
-
pad_token_id=processor.tokenizer.eos_token_id,
|
127 |
-
use_cache=False
|
128 |
-
)
|
129 |
-
prompt_len = inputs["input_ids"].shape[-1]
|
130 |
-
return processor.batch_decode(
|
131 |
-
out[:, prompt_len:], skip_special_tokens=True
|
132 |
-
)[0].strip()
|
133 |
-
|
134 |
-
# 4) Generate 20 doctor notes + convert to SOAP
|
135 |
-
print("Generating doctor notes and SOAP conversions...")
|
136 |
-
docs, soaps = [], []
|
137 |
-
|
138 |
-
for i in range(1, 21):
|
139 |
-
print(f"Generating note {i}/20...")
|
140 |
-
|
141 |
-
# Generate doctor note
|
142 |
-
doctor_note = generate_doctor_note()
|
143 |
-
docs.append(doctor_note)
|
144 |
-
|
145 |
-
# Convert to SOAP
|
146 |
-
soap_note = convert_to_soap(doctor_note)
|
147 |
-
soaps.append(soap_note)
|
148 |
-
|
149 |
-
# Memory cleanup every 3 iterations
|
150 |
-
if i % 3 == 0:
|
151 |
-
torch.cuda.empty_cache()
|
152 |
-
gc.collect()
|
153 |
-
print(f"Memory cleaned after note {i}")
|
154 |
-
|
155 |
-
print("All notes generated successfully!")
|
156 |
-
|
157 |
-
# 5) Split into 15 train / 5 test
|
158 |
-
df = pd.DataFrame({"doctor_note": docs, "soap_note": soaps})
|
159 |
-
train_df, test_df = train_test_split(df, test_size=5, random_state=42)
|
160 |
-
|
161 |
-
os.makedirs("outputs", exist_ok=True)
|
162 |
-
|
163 |
-
# 6) Generate predictions on train split β outputs/inference.tsv
|
164 |
-
print("Generating predictions for training set...")
|
165 |
-
train_preds = []
|
166 |
-
for idx, doctor_note in enumerate(train_df["doctor_note"]):
|
167 |
-
print(f"Predicting train {idx+1}/{len(train_df)}...")
|
168 |
-
pred_soap = convert_to_soap(doctor_note)
|
169 |
-
train_preds.append(pred_soap)
|
170 |
-
|
171 |
-
if (idx + 1) % 3 == 0:
|
172 |
-
torch.cuda.empty_cache()
|
173 |
-
gc.collect()
|
174 |
-
|
175 |
-
inf_df = train_df.reset_index(drop=True).copy()
|
176 |
-
inf_df["id"] = inf_df.index + 1
|
177 |
-
inf_df["ground_truth_soap"] = inf_df["soap_note"]
|
178 |
-
inf_df["predicted_soap"] = train_preds
|
179 |
-
|
180 |
-
# Save inference results
|
181 |
-
inf_df[["id", "ground_truth_soap", "predicted_soap"]].to_csv(
|
182 |
-
"outputs/inference.tsv", sep="\t", index=False
|
183 |
-
)
|
184 |
-
print("Inference results saved!")
|
185 |
-
|
186 |
-
# 7) Generate predictions on test split β outputs/eval.csv
|
187 |
-
print("Generating predictions for test set...")
|
188 |
-
test_preds = []
|
189 |
-
for idx, doctor_note in enumerate(test_df["doctor_note"]):
|
190 |
-
print(f"Predicting test {idx+1}/{len(test_df)}...")
|
191 |
-
pred_soap = convert_to_soap(doctor_note)
|
192 |
-
test_preds.append(pred_soap)
|
193 |
-
|
194 |
-
torch.cuda.empty_cache()
|
195 |
-
gc.collect()
|
196 |
-
|
197 |
-
eval_df = pd.DataFrame({
|
198 |
-
"id": range(1, len(test_preds) + 1),
|
199 |
-
"predicted_soap": test_preds
|
200 |
-
})
|
201 |
-
eval_df.to_csv("outputs/eval.csv", index=False)
|
202 |
-
print("Evaluation results saved!")
|
203 |
-
|
204 |
-
# 8) Save complete dataset for reference
|
205 |
-
complete_df = pd.DataFrame({
|
206 |
-
"id": range(1, len(docs) + 1),
|
207 |
-
"doctor_note": docs,
|
208 |
-
"soap_note": soaps
|
209 |
-
})
|
210 |
-
complete_df.to_csv("outputs/complete_dataset.csv", index=False)
|
211 |
-
print("Complete dataset saved!")
|
212 |
-
|
213 |
-
# 9) Cleanup model
|
214 |
-
del model
|
215 |
-
torch.cuda.empty_cache()
|
216 |
-
gc.collect()
|
217 |
-
print("Model cleaned up!")
|
218 |
-
|
219 |
-
# 10) Return status + file paths for download
|
220 |
-
return (
|
221 |
-
f"β
Successfully generated 20 notes!\n"
|
222 |
-
f"π Training set: {len(train_df)} notes\n"
|
223 |
-
f"π§ͺ Test set: {len(test_df)} notes\n"
|
224 |
-
f"πΎ Files ready for download",
|
225 |
-
"outputs/inference.tsv",
|
226 |
-
"outputs/eval.csv",
|
227 |
-
"outputs/complete_dataset.csv"
|
228 |
-
)
|
229 |
-
|
230 |
-
except Exception as e:
|
231 |
-
traceback.print_exc()
|
232 |
-
return (f"β Error: {e}", None, None, None)
|
233 |
-
|
234 |
-
# βββ Gradio UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
235 |
-
with gr.Blocks(title="SOAP Generator") as demo:
|
236 |
-
gr.Markdown("""
|
237 |
-
# π©Ί Medical SOAP Note Generator
|
238 |
-
|
239 |
-
This app generates realistic doctor's notes and converts them to SOAP format:
|
240 |
-
- **S**ubjective: Patient's reported symptoms
|
241 |
-
- **O**bjective: Observable findings and exam results
|
242 |
-
- **A**ssessment: Clinical diagnosis/impression
|
243 |
-
- **P**lan: Treatment plan and follow-up
|
244 |
-
|
245 |
-
**Process:**
|
246 |
-
1. Generate 20 realistic doctor's progress notes
|
247 |
-
2. Convert each note to structured SOAP format
|
248 |
-
3. Split into 15 training + 5 test samples
|
249 |
-
4. Generate predictions and export files
|
250 |
-
""")
|
251 |
-
|
252 |
-
with gr.Row():
|
253 |
-
btn = gr.Button("π Generate & Export SOAP Notes", variant="primary", size="lg")
|
254 |
-
|
255 |
-
with gr.Row():
|
256 |
-
status = gr.Textbox(
|
257 |
-
label="π Generation Status",
|
258 |
-
interactive=False,
|
259 |
-
lines=5,
|
260 |
-
placeholder="Click the button above to start generation..."
|
261 |
-
)
|
262 |
-
|
263 |
-
with gr.Row():
|
264 |
-
with gr.Column():
|
265 |
-
inf_file = gr.File(label="π Download inference.tsv (Training Predictions)")
|
266 |
-
with gr.Column():
|
267 |
-
eval_file = gr.File(label="π§ͺ Download eval.csv (Test Predictions)")
|
268 |
-
with gr.Column():
|
269 |
-
complete_file = gr.File(label="πΎ Download complete_dataset.csv (All Data)")
|
270 |
-
|
271 |
-
btn.click(
|
272 |
-
fn=generate_and_export,
|
273 |
-
inputs=None,
|
274 |
-
outputs=[status, inf_file, eval_file, complete_file]
|
275 |
-
)
|
276 |
-
|
277 |
-
gr.Markdown("""
|
278 |
-
### π Output Files:
|
279 |
-
- **inference.tsv**: Training set with ground truth and predicted SOAP notes
|
280 |
-
- **eval.csv**: Test set predictions only
|
281 |
-
- **complete_dataset.csv**: All 20 generated doctor notes and SOAP conversions
|
282 |
-
""")
|
283 |
-
|
284 |
-
if __name__ == "__main__":
|
285 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|