Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,10 +2,336 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import time
|
| 6 |
import io
|
| 7 |
import subprocess
|
| 8 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import cv2
|
| 10 |
|
| 11 |
# Install required packages
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
+
import timeimport gradio as gr
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
import time
|
| 10 |
import io
|
| 11 |
import subprocess
|
| 12 |
import sys
|
| 13 |
+
|
| 14 |
+
# Install required packages
|
| 15 |
+
def install_packages():
|
| 16 |
+
packages = [
|
| 17 |
+
"transformers",
|
| 18 |
+
"accelerate",
|
| 19 |
+
"timm",
|
| 20 |
+
"easyocr"
|
| 21 |
+
]
|
| 22 |
+
for package in packages:
|
| 23 |
+
try:
|
| 24 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 25 |
+
except:
|
| 26 |
+
print(f"Warning: Could not install {package}")
|
| 27 |
+
|
| 28 |
+
# Install packages at startup
|
| 29 |
+
install_packages()
|
| 30 |
+
|
| 31 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoConfig
|
| 32 |
+
|
| 33 |
+
# Global variables for model
|
| 34 |
+
processor = None
|
| 35 |
+
model = None
|
| 36 |
+
config = None
|
| 37 |
+
ocr_reader = None
|
| 38 |
+
|
| 39 |
+
def load_model():
|
| 40 |
+
"""Load the Gemma 3n model"""
|
| 41 |
+
global processor, model, config, ocr_reader
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
print("π Loading Gemma 3n model...")
|
| 45 |
+
GEMMA_PATH = "google/gemma-3n-e2b-it"
|
| 46 |
+
|
| 47 |
+
# Load configuration
|
| 48 |
+
config = AutoConfig.from_pretrained(GEMMA_PATH, trust_remote_code=True)
|
| 49 |
+
print("β
Config loaded")
|
| 50 |
+
|
| 51 |
+
# Load processor
|
| 52 |
+
processor = AutoProcessor.from_pretrained(GEMMA_PATH, trust_remote_code=True)
|
| 53 |
+
print("β
Processor loaded")
|
| 54 |
+
|
| 55 |
+
# Load model
|
| 56 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 57 |
+
GEMMA_PATH,
|
| 58 |
+
config=config,
|
| 59 |
+
torch_dtype="auto",
|
| 60 |
+
device_map="auto",
|
| 61 |
+
trust_remote_code=True
|
| 62 |
+
)
|
| 63 |
+
print("β
Model loaded successfully!")
|
| 64 |
+
|
| 65 |
+
# Set up compilation fix
|
| 66 |
+
import torch._dynamo
|
| 67 |
+
torch._dynamo.config.suppress_errors = True
|
| 68 |
+
|
| 69 |
+
# Initialize OCR
|
| 70 |
+
try:
|
| 71 |
+
import easyocr
|
| 72 |
+
ocr_reader = easyocr.Reader(['en'], gpu=False, verbose=False)
|
| 73 |
+
print("β
EasyOCR initialized")
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"β οΈ EasyOCR not available: {e}")
|
| 76 |
+
ocr_reader = None
|
| 77 |
+
|
| 78 |
+
return True
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"β Model loading failed: {e}")
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def generate_soap_note(text):
|
| 85 |
+
"""Generate SOAP note using Gemma 3n"""
|
| 86 |
+
if model is None or processor is None:
|
| 87 |
+
return "β Model not loaded. Please wait for initialization."
|
| 88 |
+
|
| 89 |
+
soap_prompt = f"""You are a medical AI assistant. Convert the following medical notes into a properly formatted SOAP note.
|
| 90 |
+
|
| 91 |
+
Medical notes:
|
| 92 |
+
{text}
|
| 93 |
+
|
| 94 |
+
Please format as:
|
| 95 |
+
S - SUBJECTIVE: (chief complaint, history of present illness, past medical history, medications, allergies)
|
| 96 |
+
O - OBJECTIVE: (vital signs, physical examination findings)
|
| 97 |
+
A - ASSESSMENT: (diagnosis/clinical impression)
|
| 98 |
+
P - PLAN: (treatment plan, follow-up instructions)
|
| 99 |
+
|
| 100 |
+
Generate a complete, professional SOAP note:"""
|
| 101 |
+
|
| 102 |
+
messages = [{
|
| 103 |
+
"role": "system",
|
| 104 |
+
"content": [{"type": "text", "text": "You are an expert medical AI assistant specialized in creating SOAP notes from medical documentation."}]
|
| 105 |
+
}, {
|
| 106 |
+
"role": "user",
|
| 107 |
+
"content": [{"type": "text", "text": soap_prompt}]
|
| 108 |
+
}]
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
inputs = processor.apply_chat_template(
|
| 112 |
+
messages,
|
| 113 |
+
add_generation_prompt=True,
|
| 114 |
+
tokenize=True,
|
| 115 |
+
return_dict=True,
|
| 116 |
+
return_tensors="pt"
|
| 117 |
+
).to(model.device)
|
| 118 |
+
|
| 119 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 120 |
+
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
outputs = model.generate(
|
| 123 |
+
**inputs,
|
| 124 |
+
max_new_tokens=400,
|
| 125 |
+
do_sample=True,
|
| 126 |
+
temperature=0.1,
|
| 127 |
+
top_p=0.95,
|
| 128 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
| 129 |
+
disable_compile=True
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
response = processor.batch_decode(
|
| 133 |
+
outputs[:, input_len:],
|
| 134 |
+
skip_special_tokens=True
|
| 135 |
+
)[0].strip()
|
| 136 |
+
|
| 137 |
+
return response
|
| 138 |
+
|
| 139 |
+
except Exception as e:
|
| 140 |
+
return f"β SOAP generation failed: {str(e)}"
|
| 141 |
+
|
| 142 |
+
def extract_text_from_image(image):
|
| 143 |
+
"""Extract text using EasyOCR - fast processing"""
|
| 144 |
+
if ocr_reader is None:
|
| 145 |
+
return "β OCR not available"
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
if hasattr(image, 'convert'):
|
| 149 |
+
image = image.convert('RGB')
|
| 150 |
+
img_array = np.array(image)
|
| 151 |
+
|
| 152 |
+
results = ocr_reader.readtext(img_array, detail=0, paragraph=True)
|
| 153 |
+
if results:
|
| 154 |
+
return ' '.join(results).strip()
|
| 155 |
+
else:
|
| 156 |
+
return "β No text detected in image"
|
| 157 |
+
|
| 158 |
+
except Exception as e:
|
| 159 |
+
return f"β OCR failed: {str(e)}"
|
| 160 |
+
|
| 161 |
+
def process_medical_input(image, text):
|
| 162 |
+
"""Main processing function for the Gradio interface"""
|
| 163 |
+
|
| 164 |
+
if image is not None and text.strip():
|
| 165 |
+
return "β οΈ Please provide either an image OR text, not both.", ""
|
| 166 |
+
|
| 167 |
+
if image is not None:
|
| 168 |
+
# Process image
|
| 169 |
+
print("π Extracting text from image...")
|
| 170 |
+
extracted_text = extract_text_from_image(image)
|
| 171 |
+
|
| 172 |
+
if extracted_text.startswith('β'):
|
| 173 |
+
return extracted_text, ""
|
| 174 |
+
|
| 175 |
+
print("π€ Generating SOAP note...")
|
| 176 |
+
soap_note = generate_soap_note(extracted_text)
|
| 177 |
+
|
| 178 |
+
return extracted_text, soap_note
|
| 179 |
+
|
| 180 |
+
elif text.strip():
|
| 181 |
+
# Process text directly
|
| 182 |
+
print("π€ Generating SOAP note from text...")
|
| 183 |
+
soap_note = generate_soap_note(text.strip())
|
| 184 |
+
return text.strip(), soap_note
|
| 185 |
+
|
| 186 |
+
else:
|
| 187 |
+
return "β Please provide either an image or text input.", ""
|
| 188 |
+
|
| 189 |
+
def create_demo():
|
| 190 |
+
"""Create the Gradio demo interface"""
|
| 191 |
+
|
| 192 |
+
# Sample text for demonstration
|
| 193 |
+
sample_text = """Patient: John Smith, 45yo male
|
| 194 |
+
CC: Chest pain
|
| 195 |
+
Vitals: BP 140/90, HR 88, RR 16, O2 98%, Temp 98.6F
|
| 196 |
+
HPI: Patient reports crushing chest pain x 2 hours, radiating to left arm
|
| 197 |
+
PMH: HTN, DM Type 2
|
| 198 |
+
Current Meds: Lisinopril 10mg daily, Metformin 500mg BID
|
| 199 |
+
PE: Diaphoretic, anxious appearance
|
| 200 |
+
EKG: ST elevation in leads II, III, aVF"""
|
| 201 |
+
|
| 202 |
+
with gr.Blocks(title="Medical OCR SOAP Generator", theme=gr.themes.Soft()) as demo:
|
| 203 |
+
|
| 204 |
+
gr.HTML("""
|
| 205 |
+
<h1>π₯ Medical OCR SOAP Generator - LIVE DEMO</h1>
|
| 206 |
+
<h2>π― For Competition Judges - Quick 2-Minute Demo:</h2>
|
| 207 |
+
|
| 208 |
+
<div style="background-color: #e6f3ff; padding: 15px; border-radius: 10px; margin: 10px 0;">
|
| 209 |
+
<h3>π SAMPLE IMAGE PROVIDED:</h3>
|
| 210 |
+
<p><strong>π Download "docs-note-to-upload.jpg" from the Files tab above, then upload it below</strong></p>
|
| 211 |
+
<p><strong>OR</strong> click "Try Sample Medical Text" button for instant text demo</p>
|
| 212 |
+
</div>
|
| 213 |
+
|
| 214 |
+
<h3>Demo Steps:</h3>
|
| 215 |
+
<ol>
|
| 216 |
+
<li><strong>Upload the sample image</strong> (docs-note-to-upload.jpg from Files tab) <strong>OR</strong> click sample text button</li>
|
| 217 |
+
<li><strong>Click "Generate SOAP Note"</strong></li>
|
| 218 |
+
<li><strong>Wait ~2 minutes</strong> for AI processing (first time only)</li>
|
| 219 |
+
<li><strong>See professional SOAP note</strong> generated by Gemma 3n</li>
|
| 220 |
+
</ol>
|
| 221 |
+
|
| 222 |
+
<h3>β
What This Demo Shows:</h3>
|
| 223 |
+
<ul>
|
| 224 |
+
<li><strong>Real OCR</strong> extraction from handwritten medical notes</li>
|
| 225 |
+
<li><strong>AI-powered medical reasoning</strong> with Gemma 3n</li>
|
| 226 |
+
<li><strong>Professional SOAP formatting</strong> (Subjective, Objective, Assessment, Plan)</li>
|
| 227 |
+
<li><strong>HIPAA-compliant</strong> local processing</li>
|
| 228 |
+
</ul>
|
| 229 |
+
|
| 230 |
+
<p><strong>β οΈ Note:</strong> First generation takes ~2 minutes as model loads. Subsequent ones are faster.</p>
|
| 231 |
+
<hr>
|
| 232 |
+
""")
|
| 233 |
+
|
| 234 |
+
with gr.Row():
|
| 235 |
+
with gr.Column():
|
| 236 |
+
image_input = gr.Image(
|
| 237 |
+
type="pil",
|
| 238 |
+
label="π· Upload Medical Image",
|
| 239 |
+
height=300
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
text_input = gr.Textbox(
|
| 243 |
+
label="π Or Enter Medical Text",
|
| 244 |
+
placeholder=sample_text,
|
| 245 |
+
lines=8,
|
| 246 |
+
max_lines=15
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
submit_btn = gr.Button(
|
| 250 |
+
"Generate SOAP Note",
|
| 251 |
+
variant="primary",
|
| 252 |
+
size="lg"
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
with gr.Column():
|
| 256 |
+
extracted_output = gr.Textbox(
|
| 257 |
+
label="π Extracted/Input Text",
|
| 258 |
+
lines=6,
|
| 259 |
+
max_lines=10
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
soap_output = gr.Textbox(
|
| 263 |
+
label="π₯ Generated SOAP Note",
|
| 264 |
+
lines=12,
|
| 265 |
+
max_lines=20
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
# Example section
|
| 269 |
+
gr.Markdown("### π Quick Test Example")
|
| 270 |
+
example_btn = gr.Button("Try Sample Medical Text", variant="secondary")
|
| 271 |
+
|
| 272 |
+
def load_example():
|
| 273 |
+
return sample_text, None
|
| 274 |
+
|
| 275 |
+
example_btn.click(
|
| 276 |
+
load_example,
|
| 277 |
+
outputs=[text_input, image_input]
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# Process function
|
| 281 |
+
submit_btn.click(
|
| 282 |
+
process_medical_input,
|
| 283 |
+
inputs=[image_input, text_input],
|
| 284 |
+
outputs=[extracted_output, soap_output]
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
gr.Markdown("""
|
| 288 |
+
---
|
| 289 |
+
**About:** This application uses Google's Gemma 3n model for medical text understanding and EasyOCR for handwriting recognition.
|
| 290 |
+
All processing is done locally for HIPAA compliance.
|
| 291 |
+
|
| 292 |
+
**Competition Entry:** Medical AI Innovation Challenge 2024
|
| 293 |
+
""")
|
| 294 |
+
|
| 295 |
+
return demo
|
| 296 |
+
|
| 297 |
+
# Initialize the application
|
| 298 |
+
if __name__ == "__main__":
|
| 299 |
+
print("π Starting Medical OCR SOAP Generator...")
|
| 300 |
+
|
| 301 |
+
# Load model
|
| 302 |
+
model_loaded = load_model()
|
| 303 |
+
|
| 304 |
+
if model_loaded:
|
| 305 |
+
print("β
All systems ready!")
|
| 306 |
+
demo = create_demo()
|
| 307 |
+
demo.launch(
|
| 308 |
+
share=True,
|
| 309 |
+
server_name="0.0.0.0",
|
| 310 |
+
server_port=7860
|
| 311 |
+
)
|
| 312 |
+
else:
|
| 313 |
+
print("β Failed to load model. Creating fallback demo...")
|
| 314 |
+
|
| 315 |
+
def fallback_demo():
|
| 316 |
+
return "β Model loading failed. Please check the logs.", "β Model not available."
|
| 317 |
+
|
| 318 |
+
demo = gr.Interface(
|
| 319 |
+
fn=fallback_demo,
|
| 320 |
+
inputs=[
|
| 321 |
+
gr.Image(type="pil", label="Upload Medical Image"),
|
| 322 |
+
gr.Textbox(label="Enter Medical Text", lines=5)
|
| 323 |
+
],
|
| 324 |
+
outputs=[
|
| 325 |
+
gr.Textbox(label="Status"),
|
| 326 |
+
gr.Textbox(label="Error Message")
|
| 327 |
+
],
|
| 328 |
+
title="β Medical OCR - Model Loading Failed"
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
demo.launch(share=True)
|
| 332 |
+
import io
|
| 333 |
+
import subprocess
|
| 334 |
+
import sys
|
| 335 |
import cv2
|
| 336 |
|
| 337 |
# Install required packages
|