bol
init
99738e0
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange
from .modules.layers import (DoubleStreamBlock, EmbedND, LastLayer,
MLPEmbedder, SingleStreamBlock,
timestep_embedding)
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
_supports_gradient_checkpointing = True
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
self.gradient_checkpointing = True # False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@property
def attn_processors(self):
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor, # clip
block_controlnet_hidden_states=None,
guidance: Tensor | None = None,
image_proj: Tensor | None = None,
ip_scale: Tensor | float = 1.0,
use_share_weight_referencenet=False,
single_img_ids: Tensor | None = None,
single_block_refnet=False,
double_block_refnet=False,
) -> Tensor:
if single_block_refnet or double_block_refnet:
assert use_share_weight_referencenet == True
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
# print("vec shape 1:", vec.shape)
# print("y shape 1:", y.shape)
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
# print("vec shape 1.5:", vec.shape)
vec = vec + self.vector_in(y)
# print("vec shape 2:", vec.shape)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
if use_share_weight_referencenet:
# print("In img shape:", img.shape)
img_latent_length = img.shape[1]
single_ids = torch.cat((txt_ids, single_img_ids), dim=1)
single_pe = self.pe_embedder(single_ids)
if double_block_refnet and (not single_block_refnet):
double_block_pe = pe
double_block_img = img
single_block_pe = single_pe
elif single_block_refnet and (not double_block_refnet):
double_block_pe = single_pe
double_block_img = img[:, img_latent_length//2:, :]
single_block_pe = pe
ref_img_latent = img[:, :img_latent_length//2, :]
else:
print("RefNet only support either double blocks or single blocks. If you want to turn on all blocks for RefNet, please use Spatial Condition.")
raise NotImplementedError
if block_controlnet_hidden_states is not None:
controlnet_depth = len(block_controlnet_hidden_states)
for index_block, block in enumerate(self.double_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
if not use_share_weight_referencenet:
img, txt = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
img,
txt,
vec,
pe,
image_proj,
ip_scale,
use_reentrant=True,
)
else:
double_block_img, txt = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
double_block_img,
txt,
vec,
double_block_pe,
image_proj,
ip_scale,
use_reentrant=True,
)
else:
if not use_share_weight_referencenet:
img, txt = block(
img=img,
txt=txt,
vec=vec,
pe=pe,
image_proj=image_proj,
ip_scale=ip_scale,
)
else:
double_block_img, txt = block(
img=double_block_img,
txt=txt,
vec=vec,
pe=double_block_pe,
image_proj=image_proj,
ip_scale=ip_scale,
)
# controlnet residual
if block_controlnet_hidden_states is not None:
if not use_share_weight_referencenet:
img = img + block_controlnet_hidden_states[index_block % 2]
else:
double_block_img = double_block_img + block_controlnet_hidden_states[index_block % 2]
if use_share_weight_referencenet:
mid_img = double_block_img
# print("After double blocks img shape:",mid_img.shape)
if double_block_refnet and (not single_block_refnet):
single_block_img = mid_img[:, img_latent_length//2:, :]
elif single_block_refnet and (not double_block_refnet):
single_block_img = torch.cat([ref_img_latent, mid_img], dim=1)
single_block_img = torch.cat((txt, single_block_img), 1)
else:
img = torch.cat((txt, img), 1)
# print("single block input img shape:", single_block_img.shape)
for block in self.single_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
if not use_share_weight_referencenet:
img = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
img,
vec,
pe,
use_reentrant=True,
)
else:
single_block_img = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
single_block_img,
vec,
single_block_pe,
use_reentrant=True,
)
else:
if not use_share_weight_referencenet:
img = block(
img,
vec=vec,
pe=pe,
)
else:
single_block_img = block(
single_block_img,
vec=vec,
pe=single_block_pe,
)
if use_share_weight_referencenet:
out_img = single_block_img
if double_block_refnet and (not single_block_refnet):
out_img = out_img[:, txt.shape[1]:, ...]
elif single_block_refnet and (not double_block_refnet):
out_img = out_img[:, txt.shape[1]:, ...]
out_img = out_img[:, img_latent_length//2:, :]
img = out_img
# print("output img shape:", img.shape)
else:
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
# In img shape: torch.Size([1, 2048, 3072])
# After double blocks img shape: torch.Size([1, 1024, 3072])
# single block input img shape: torch.Size([1, 2560, 3072])
# output img shape: torch.Size([1, 1024, 3072])
#
# In img shape: torch.Size([1, 2048, 3072])
# After double blocks img shape: torch.Size([1, 2048, 3072]) [78/1966]
# single block input img shape: torch.Size([1, 1536, 3072])
# output img shape: torch.Size([1, 1024, 3072])