| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from typing import List, Dict | |
| # Response function for the chatbot | |
| def respond( | |
| message: str, | |
| history: List[Dict[str, str]], | |
| system_message: str, | |
| max_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| hf_token: gr.OAuthToken, | |
| ): | |
| """ | |
| Sends a user input to the summarization model using text-to-text interface. | |
| """ | |
| client = InferenceClient( | |
| token=hf_token.token, | |
| model="Bocklitz-Lab/lit2vec-tldr-bart-model" | |
| ) | |
| # You can prepend the system message if needed | |
| input_text = f"{system_message}\n\n{message}" | |
| response = client.text_to_text( | |
| input=input_text, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p | |
| ) | |
| yield response | |
| # Define the Gradio interface | |
| chatbot = gr.ChatInterface( | |
| fn=respond, | |
| type="messages", | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a friendly chatbot.", | |
| label="System message", | |
| lines=1 | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=2048, | |
| value=512, | |
| step=1, | |
| label="Max new tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| ) | |
| # Set up the full Gradio Blocks layout with login | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.LoginButton() | |
| chatbot.render() | |
| # Run the app | |
| if __name__ == "__main__": | |
| demo.launch() | |