Spaces:
Running
on
Zero
Running
on
Zero
Boboiazumi
commited on
Commit
•
943620a
1
Parent(s):
31e2186
Update app.py
Browse files
app.py
CHANGED
@@ -48,6 +48,11 @@ def load_pipeline(model_name):
|
|
48 |
StableDiffusionXLPipeline.from_single_file
|
49 |
if MODEL.endswith(".safetensors")
|
50 |
else StableDiffusionXLPipeline.from_pretrained
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
|
53 |
pipe = pipeline(
|
@@ -60,9 +65,28 @@ def load_pipeline(model_name):
|
|
60 |
use_auth_token=HF_TOKEN,
|
61 |
)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
pipe.to(device)
|
64 |
-
|
|
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
@spaces.GPU
|
68 |
def generate(
|
@@ -82,6 +106,7 @@ def generate(
|
|
82 |
upscale_by: float = 1.5,
|
83 |
add_quality_tags: bool = True,
|
84 |
isImg2Img: bool = True,
|
|
|
85 |
|
86 |
progress=gr.Progress(track_tqdm=True),
|
87 |
):
|
@@ -107,6 +132,9 @@ def generate(
|
|
107 |
backup_scheduler = pipe.scheduler
|
108 |
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
109 |
|
|
|
|
|
|
|
110 |
if use_upscaler:
|
111 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
112 |
metadata = {
|
@@ -142,38 +170,77 @@ def generate(
|
|
142 |
|
143 |
try:
|
144 |
if use_upscaler:
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
else:
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
if images:
|
179 |
image_paths = [
|
@@ -192,14 +259,15 @@ def generate(
|
|
192 |
if use_upscaler:
|
193 |
del upscaler_pipe
|
194 |
pipe.scheduler = backup_scheduler
|
|
|
195 |
utils.free_memory()
|
196 |
|
197 |
|
198 |
if torch.cuda.is_available():
|
199 |
-
pipe = load_pipeline(MODEL)
|
200 |
logger.info("Loaded on Device!")
|
201 |
else:
|
202 |
-
pipe = None
|
203 |
|
204 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
205 |
quality_prompt = {
|
@@ -241,7 +309,9 @@ with gr.Blocks(css="style.css", theme="NoCrypt/miku@1.2.1") as demo:
|
|
241 |
)
|
242 |
image = gr.Image(
|
243 |
label="Image Input",
|
244 |
-
visible=False
|
|
|
|
|
245 |
)
|
246 |
with gr.Accordion(label="Quality Tags", open=True):
|
247 |
add_quality_tags = gr.Checkbox(
|
@@ -402,6 +472,8 @@ with gr.Blocks(css="style.css", theme="NoCrypt/miku@1.2.1") as demo:
|
|
402 |
upscaler_strength,
|
403 |
upscale_by,
|
404 |
add_quality_tags,
|
|
|
|
|
405 |
],
|
406 |
outputs=[result, gr_metadata],
|
407 |
api_name="run",
|
|
|
48 |
StableDiffusionXLPipeline.from_single_file
|
49 |
if MODEL.endswith(".safetensors")
|
50 |
else StableDiffusionXLPipeline.from_pretrained
|
51 |
+
|
52 |
+
img_pipeline = (
|
53 |
+
StableDiffusionXLImg2ImgPipeline.from_single_file
|
54 |
+
if MODEL.endswith(".safetensors")
|
55 |
+
else StableDiffusionXLImg2ImgPipeline.from_pretrained
|
56 |
)
|
57 |
|
58 |
pipe = pipeline(
|
|
|
65 |
use_auth_token=HF_TOKEN,
|
66 |
)
|
67 |
|
68 |
+
img_pipe = img_pipeline(
|
69 |
+
model_name,
|
70 |
+
vae=vae,
|
71 |
+
torch_dtype=torch.float16,
|
72 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
73 |
+
use_safetensors=True,
|
74 |
+
add_watermarker=False,
|
75 |
+
use_auth_token=HF_TOKEN,
|
76 |
+
)
|
77 |
+
|
78 |
pipe.to(device)
|
79 |
+
img_pipe.to(device)
|
80 |
+
return pipe, img_pipe
|
81 |
|
82 |
+
def load_img(resize_width,img):
|
83 |
+
img = Image.open(img)
|
84 |
+
width, height = img.size
|
85 |
+
scale = resize_width / width
|
86 |
+
resize_height = height * scale
|
87 |
+
|
88 |
+
img = img.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
|
89 |
+
return img, resize_width, resize_height
|
90 |
|
91 |
@spaces.GPU
|
92 |
def generate(
|
|
|
106 |
upscale_by: float = 1.5,
|
107 |
add_quality_tags: bool = True,
|
108 |
isImg2Img: bool = True,
|
109 |
+
img_path: str= ""
|
110 |
|
111 |
progress=gr.Progress(track_tqdm=True),
|
112 |
):
|
|
|
132 |
backup_scheduler = pipe.scheduler
|
133 |
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
134 |
|
135 |
+
img_backup_scheduler = img_pipe.scheduler
|
136 |
+
img_pipe.scheduler = utils.get_scheduler(img_pipe.scheduler.config, sampler)
|
137 |
+
|
138 |
if use_upscaler:
|
139 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
140 |
metadata = {
|
|
|
170 |
|
171 |
try:
|
172 |
if use_upscaler:
|
173 |
+
if isImg2Img:
|
174 |
+
img, img_width, img_height = load_img(512, img_path)
|
175 |
+
latents = img_pipe(
|
176 |
+
prompt=prompt,
|
177 |
+
negative_prompt=negative_prompt,
|
178 |
+
width=img_width,
|
179 |
+
height=img_height,
|
180 |
+
image=img,
|
181 |
+
guidance_scale=guidance_scale,
|
182 |
+
num_inference_steps=num_inference_steps,
|
183 |
+
generator=generator,
|
184 |
+
output_type="latent",
|
185 |
+
).images
|
186 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
187 |
+
images = upscaler_pipe(
|
188 |
+
prompt=prompt,
|
189 |
+
negative_prompt=negative_prompt,
|
190 |
+
image=upscaled_latents,
|
191 |
+
guidance_scale=guidance_scale,
|
192 |
+
num_inference_steps=num_inference_steps,
|
193 |
+
strength=upscaler_strength,
|
194 |
+
generator=generator,
|
195 |
+
output_type="pil",
|
196 |
+
).images
|
197 |
+
else:
|
198 |
+
latents = pipe(
|
199 |
+
prompt=prompt,
|
200 |
+
negative_prompt=negative_prompt,
|
201 |
+
width=width,
|
202 |
+
height=height,
|
203 |
+
guidance_scale=guidance_scale,
|
204 |
+
num_inference_steps=num_inference_steps,
|
205 |
+
generator=generator,
|
206 |
+
output_type="latent",
|
207 |
+
).images
|
208 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
209 |
+
images = upscaler_pipe(
|
210 |
+
prompt=prompt,
|
211 |
+
negative_prompt=negative_prompt,
|
212 |
+
image=upscaled_latents,
|
213 |
+
guidance_scale=guidance_scale,
|
214 |
+
num_inference_steps=num_inference_steps,
|
215 |
+
strength=upscaler_strength,
|
216 |
+
generator=generator,
|
217 |
+
output_type="pil",
|
218 |
+
).images
|
219 |
else:
|
220 |
+
if isImg2Img:
|
221 |
+
img, img_width, img_height = load_img(512, img_path)
|
222 |
+
images = pipe(
|
223 |
+
prompt=prompt,
|
224 |
+
negative_prompt=negative_prompt,
|
225 |
+
width=img_width,
|
226 |
+
height=img_height,
|
227 |
+
image=img,
|
228 |
+
guidance_scale=guidance_scale,
|
229 |
+
num_inference_steps=num_inference_steps,
|
230 |
+
generator=generator,
|
231 |
+
output_type="pil",
|
232 |
+
).images
|
233 |
+
else:
|
234 |
+
images = img_pipe(
|
235 |
+
prompt=prompt,
|
236 |
+
negative_prompt=negative_prompt,
|
237 |
+
width=width,
|
238 |
+
height=height,
|
239 |
+
guidance_scale=guidance_scale,
|
240 |
+
num_inference_steps=num_inference_steps,
|
241 |
+
generator=generator,
|
242 |
+
output_type="pil",
|
243 |
+
).images
|
244 |
|
245 |
if images:
|
246 |
image_paths = [
|
|
|
259 |
if use_upscaler:
|
260 |
del upscaler_pipe
|
261 |
pipe.scheduler = backup_scheduler
|
262 |
+
img_pipe.scheduler = img_backup_scheduler
|
263 |
utils.free_memory()
|
264 |
|
265 |
|
266 |
if torch.cuda.is_available():
|
267 |
+
pipe, img_pipe = load_pipeline(MODEL)
|
268 |
logger.info("Loaded on Device!")
|
269 |
else:
|
270 |
+
pipe, img_pipe = None, None
|
271 |
|
272 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
273 |
quality_prompt = {
|
|
|
309 |
)
|
310 |
image = gr.Image(
|
311 |
label="Image Input",
|
312 |
+
visible=False,
|
313 |
+
source="upload",
|
314 |
+
type="filepath"
|
315 |
)
|
316 |
with gr.Accordion(label="Quality Tags", open=True):
|
317 |
add_quality_tags = gr.Checkbox(
|
|
|
472 |
upscaler_strength,
|
473 |
upscale_by,
|
474 |
add_quality_tags,
|
475 |
+
isImg2Img,
|
476 |
+
img_path,
|
477 |
],
|
478 |
outputs=[result, gr_metadata],
|
479 |
api_name="run",
|