|
import torch |
|
import torch.nn as nn |
|
import torch.nn.parallel |
|
import torch.utils.data |
|
from torch.autograd import Variable |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
from manopth.manolayer import ManoLayer |
|
|
|
|
|
|
|
def create_mano_layers(mano_path, device, n_cmps): |
|
class Output: |
|
def __init__(self, vertices, joints): |
|
self.vertices = vertices |
|
self.joints = joints |
|
|
|
class SmplxAdapter: |
|
def __init__(self, side): |
|
self.m = ManoLayer(mano_root=f'{mano_path}/mano', use_pca=True, ncomps=n_cmps, side=side, flat_hand_mean=False, robust_rot=True).to(device) |
|
self.faces = self.m.th_faces.cpu().numpy() |
|
self.shapedirs = self.m.th_shapedirs |
|
|
|
def __call__(self, global_orient, hand_pose, betas, transl): |
|
vertices, joints = self.m(torch.cat([global_orient, hand_pose], 1), betas, transl) |
|
|
|
vertices /= 1000 |
|
joints /= 1000 |
|
|
|
return Output(vertices, joints) |
|
|
|
mano_layer = { |
|
'left': SmplxAdapter(side='left'), |
|
'right': SmplxAdapter(side='right') |
|
} |
|
|
|
if torch.sum(torch.abs(mano_layer['left'].m.th_shapedirs[:,0,:] - mano_layer['right'].m.th_shapedirs[:,0,:])) < 1: |
|
print('Fix th_shapedirs bug of MANO') |
|
mano_layer['left'].m.th_shapedirs[:,0,:] *= -1 |
|
|
|
return mano_layer |
|
|