Spaces:
Sleeping
Sleeping
# Import required libraries | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.document_loaders import ( | |
UnstructuredWordDocumentLoader, | |
PyMuPDFLoader, | |
UnstructuredFileLoader, | |
) | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.chat_models import ChatOpenAI | |
from langchain.vectorstores import Pinecone, Chroma | |
from langchain.chains import ConversationalRetrievalChain, LLMChain | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from langchain.memory import ConversationBufferMemory | |
import os | |
import langchain | |
import pinecone | |
import streamlit as st | |
import shutil | |
import json | |
OPENAI_API_KEY = '' | |
PINECONE_API_KEY = '' | |
PINECONE_API_ENV = '' | |
gpt3p5 = 'gpt-3.5-turbo-1106' | |
gpt4 = 'gpt-4-1106-preview' | |
local_model_tuples = [ | |
(0, 'mistral_7b', "TheBloke/OpenHermes-2-Mistral-7B-GGUF", "openhermes-2-mistral-7b.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GGUF"), | |
(1, 'mistral_7b_inst_small', "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q2_K.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"), | |
(2, 'mistral_7b_inst_med', "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"), | |
(3, 'llama_13b_small', "TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q4_K_M.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"), | |
(4, 'llama_13b_med', "TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q8_0.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"), | |
(5, 'mixtral', "TheBloke/Mixtral-8x7B-v0.1-GGUF", "mixtral-8x7b-v0.1.Q8_0.gguf", "mixtral", "https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF"), | |
(6, 'mixtral_inst', "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", "mixtral-8x7b-instruct-v0.1.Q2_K.gguf", "mixtral", "https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"), | |
] | |
local_model_names = [t[1] for t in local_model_tuples] | |
langchain.verbose = False | |
def init(): | |
pinecone_index_name = '' | |
chroma_collection_name = '' | |
persist_directory = '' | |
docsearch_ready = False | |
directory_name = 'tmp_docs' | |
return pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name | |
def save_file(files): | |
# Remove existing files in the directory | |
if os.path.exists(directory_name): | |
for filename in os.listdir(directory_name): | |
file_path = os.path.join(directory_name, filename) | |
try: | |
if os.path.isfile(file_path): | |
os.remove(file_path) | |
except Exception as e: | |
print(f"Error: {e}") | |
# Save the new file with original filename | |
if files is not None: | |
for file in files: | |
file_name = file.name | |
file_path = os.path.join(directory_name, file_name) | |
with open(file_path, 'wb') as f: | |
shutil.copyfileobj(file, f) | |
def load_files(): | |
all_texts = [] | |
n_files = 0 | |
n_char = 0 | |
n_texts = 0 | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=400, chunk_overlap=50 | |
) | |
for filename in os.listdir(directory_name): | |
file = os.path.join(directory_name, filename) | |
if os.path.isfile(file): | |
if file.endswith(".docx"): | |
loader = UnstructuredWordDocumentLoader(file) | |
elif file.endswith(".pdf"): | |
loader = PyMuPDFLoader(file) | |
else: # assume a pure text format and attempt to load it | |
loader = UnstructuredFileLoader(file) | |
data = loader.load() | |
texts = text_splitter.split_documents(data) | |
n_files += 1 | |
n_char += len(data[0].page_content) | |
n_texts += len(texts) | |
all_texts.extend(texts) | |
st.write( | |
f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents." | |
) | |
return all_texts, n_texts | |
def ingest(_all_texts, use_pinecone, _embeddings, pinecone_index_name, chroma_collection_name, persist_directory): | |
if use_pinecone: | |
docsearch = Pinecone.from_texts( | |
[t.page_content for t in _all_texts], _embeddings, index_name=pinecone_index_name) # add namespace=pinecone_namespace if provided | |
else: | |
docsearch = Chroma.from_documents( | |
_all_texts, _embeddings, collection_name=chroma_collection_name, persist_directory=persist_directory) | |
return docsearch | |
def setup_retriever(docsearch, k): | |
retriever = docsearch.as_retriever( | |
search_type="similarity", search_kwargs={"k": k}, include_metadata=True) | |
return retriever | |
def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collection_name, persist_directory): | |
docsearch = [] | |
n_texts = 0 | |
if use_pinecone: | |
# Load the pre-created Pinecone index. | |
# The index which has already be stored in pinecone.io as long-term memory | |
if pinecone_index_name in pinecone.list_indexes(): | |
docsearch = Pinecone.from_existing_index( | |
pinecone_index_name, embeddings) # add namespace=pinecone_namespace if provided | |
index_client = pinecone.Index(pinecone_index_name) | |
# Get the index information | |
index_info = index_client.describe_index_stats() | |
# namespace_name = '' | |
# if index_info is not None: | |
# print(index_info['namespaces'][namespace_name]['vector_count']) | |
# else: | |
# print("Index information is not available.") | |
# n_texts = index_info['namespaces'][namespace_name]['vector_count'] | |
n_texts = index_info['total_vector_count'] | |
else: | |
raise ValueError('''Cannot find the specified Pinecone index. | |
Create one in pinecone.io or using, e.g., | |
pinecone.create_index( | |
name=index_name, dimension=1536, metric="cosine", shards=1)''') | |
else: | |
docsearch = Chroma(persist_directory=persist_directory, embedding_function=embeddings, | |
collection_name=chroma_collection_name) | |
n_texts = docsearch._collection.count() | |
return docsearch, n_texts | |
def get_response(query, chat_history, CRqa): | |
result = CRqa({"question": query, "chat_history": chat_history}) | |
return result['answer'], result['source_documents'] | |
def use_local_llm(r_llm, local_llm_path, temperature): | |
from langchain.llms import LlamaCpp | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from huggingface_hub import hf_hub_download | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
entry = local_model_names.index(r_llm) | |
model_id, local_model_name, model_name, model_file, model_type, model_link = local_model_tuples[entry] | |
model_path = os.path.join( local_llm_path, model_name, model_file ) | |
model_path = os.path.normpath( model_path ) | |
model_dir = os.path.join( local_llm_path, model_name ) | |
model_dir = os.path.normpath( model_dir ) | |
if not os.path.exists(model_path): | |
print("model not existing at ", model_path, "\n") | |
model_path = hf_hub_download(repo_id=model_name, filename=model_file, repo_type="model", | |
#cache_dir=local_llm_path, | |
#local_dir=local_llm_path, | |
local_dir=model_dir, | |
local_dir_use_symlinks=False) | |
print("\n model downloaded at path=",model_path) | |
else: | |
print("model existing at ", model_path) | |
llm = LlamaCpp( | |
model_path=model_path, | |
temperature=temperature, | |
# n_batch=300, | |
n_ctx=4000, | |
max_tokens=2000, | |
# n_gpu_layers=10, | |
# n_threads=12, | |
# top_p=1, | |
# repeat_penalty=1.15, | |
# verbose=False, | |
# callback_manager=callback_manager, | |
# streaming=True, | |
# chat_format="llama-2", | |
# verbose=True, # Verbose is required to pass to the callback manager | |
) | |
return llm | |
def setup_prompt(r_llm, usage): | |
B_INST, E_INST = "[INST]", "[/INST]" | |
B_SYS_LLAMA, E_SYS_LLAMA = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
B_SYS_MIS, E_SYS_MIS = "<s> ", "</s> " | |
B_SYS_MIXTRAL, E_SYS_MIXTRAL = "<s>[INST]", "[/INST]</s>[INST]" | |
system_prompt_rag = """Answer the question in your own words as truthfully as possible from the context given to you. | |
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic. | |
Think step by step and do not jump to conclusion during your reasoning at the beginning. | |
Sometimes user's question may appear to be directly related to the context but may still be indirectly related, | |
so try your best to understand the question based on the context and chat history. | |
If questions are asked where there is no relevant context available, | |
respond using out-of-context knowledge with | |
"This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." """ | |
system_prompt_chat = """Answer the question in your own words. | |
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic. | |
Think step by step and do not jump to conclusion during your reasoning at the beginning. | |
""" | |
system_prompt_task = """You will be given a task, and you are an expert in that task. | |
Perform the task for the given context, and output the result. Do not include extra descriptions. Just output the desired result defined by the task. | |
Example: You are a professional translator and are given a translation task. Then you translate the text in the context and output only the translated text. | |
Example: You are a professional proofreader and are given a proofreading task. Then you proofread the text in the context and output only the translated text. | |
""" | |
if usage == 'RAG': | |
system_prompt = system_prompt_rag | |
instruction = """ | |
Context: {context} | |
Chat history: {chat_history} | |
User: {question} | |
Bot: answer """ | |
elif usage == 'Chat': | |
system_prompt = system_prompt_chat | |
instruction = """ | |
Chat history: {chat_history} | |
User: {question} | |
Bot: answer """ | |
elif usage == 'Task': | |
system_prompt = system_prompt_task | |
instruction = """ | |
Context: {context} | |
User: {question} | |
Bot: answer """ | |
if r_llm == gpt3p5 or r_llm == gpt4: | |
template = system_prompt + instruction | |
else: | |
entry = local_model_names.index(r_llm) | |
if local_model_tuples[entry][4] == 'llama': | |
template = B_INST + B_SYS_LLAMA + system_prompt + E_SYS_LLAMA + instruction + E_INST | |
elif local_model_tuples[entry][4] == 'mistral': | |
template = B_SYS_MIS + B_INST + system_prompt + E_INST + E_SYS_MIS + B_INST + instruction + E_INST | |
elif local_model_tuples[entry][4] == 'mixtral': | |
template = B_SYS_MIXTRAL + system_prompt + E_SYS_MIXTRAL + B_INST + instruction + E_INST | |
else: | |
# Handle other models or raise an exception | |
pass | |
if usage == 'RAG': | |
prompt = PromptTemplate( | |
input_variables=["context", "chat_history", "question"], template=template | |
) | |
elif usage == 'Chat': | |
prompt = PromptTemplate( | |
input_variables=["chat_history", "question"], template=template | |
) | |
elif usage == 'Task': | |
prompt = PromptTemplate( | |
input_variables=["context", "question"], template=template | |
) | |
return prompt | |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path, usage): | |
if (r_llm == gpt3p5 or r_llm == gpt4) and OPENAI_API_KEY: | |
# Set up OpenAI embeddings | |
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) | |
# Use Open AI LLM with gpt-3.5-turbo or gpt-4. | |
# Set the temperature to be 0 if you do not want it to make up things | |
llm = ChatOpenAI(temperature=temperature, model_name=r_llm, streaming=True, | |
openai_api_key=OPENAI_API_KEY) | |
else: | |
if usage == 'RAG': | |
em_model_name='sentence-transformers/all-mpnet-base-v2' | |
embeddings = HuggingFaceEmbeddings(model_name=em_model_name) | |
else: | |
embeddings = [] | |
llm = use_local_llm(r_llm, local_llm_path, temperature) | |
return embeddings, llm | |
def load_chat_history(CHAT_HISTORY_FILENAME): | |
try: | |
with open(CHAT_HISTORY_FILENAME, 'r') as f: | |
chat_history = json.load(f) | |
except (FileNotFoundError, json.JSONDecodeError): | |
chat_history = [] | |
return chat_history | |
def save_chat_history(chat_history, CHAT_HISTORY_FILENAME): | |
with open(CHAT_HISTORY_FILENAME, 'w') as f: | |
json.dump(chat_history, f) | |
pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name = init() | |
def main(pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name): | |
docsearch_ready = False | |
chat_history = [] | |
latest_chats = [] | |
reply = '' | |
source = '' | |
LLMs = [gpt3p5, gpt4] + local_model_names | |
usage = 'RAG' | |
local_llm_path = './models/' | |
user_llm_path = '' | |
hist_fn = '' | |
# Get user input of whether to use Pinecone or not | |
col1, col2, col3 = st.columns([1, 1, 1]) | |
# create the radio buttons and text input fields | |
with col1: | |
usage = st.radio('Usage: RAG for ingested files, chat (no files), or task (for all ingested texts)', ('RAG', 'Chat', 'Task')) | |
temperature = st.slider('Temperature', 0.0, 1.0, 0.1) | |
if usage == 'RAG': | |
r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)')) | |
k_sources = st.slider('# source(s) to print out', 0, 20, 2) | |
r_ingest = st.radio('Ingest file(s)?', ('Yes', 'No')) | |
if r_pinecone == 'Pinecone (online)': | |
use_pinecone = True | |
else: | |
use_pinecone = False | |
if usage == 'Task': | |
r_ingest = 'Yes' | |
with col2: | |
r_llm = st.radio(label='LLM:', options=LLMs) | |
if r_llm == gpt3p5 or r_llm == gpt4: | |
use_openai = True | |
else: | |
use_openai = False | |
if use_openai == True: | |
OPENAI_API_KEY = st.text_input( | |
"OpenAI API key:", type="password") | |
else: | |
OPENAI_API_KEY = '' | |
if usage == 'RAG' and use_pinecone == True: | |
st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.') | |
elif usage == 'RAG' and use_pinecone == False: | |
st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.') | |
else: | |
st.write('Local GPT model is selected. All info remains local.') | |
with col3: | |
if usage == 'RAG': | |
if use_pinecone == True: | |
PINECONE_API_KEY = st.text_input( | |
"Pinecone API key:", type="password") | |
PINECONE_API_ENV = st.text_input( | |
"Pinecone API env:", type="password") | |
pinecone_index_name = st.text_input('Pinecone index:') | |
pinecone.init(api_key=PINECONE_API_KEY, | |
environment=PINECONE_API_ENV) | |
else: | |
chroma_collection_name = st.text_input( | |
'''Chroma collection name of 3-63 characters:''') | |
persist_directory = "./vectorstore" | |
else: | |
hist_fn = st.text_input('Chat history filename') | |
if use_openai == False: | |
user_llm_path = st.text_input( | |
"Path for local model (TO BE DOWNLOADED IF NOT EXISTING), type 'default' to use default path:", | |
placeholder="default") | |
if 'default' in user_llm_path: | |
user_llm_path = local_llm_path | |
if ( (pinecone_index_name or chroma_collection_name or usage == 'Task' or usage == 'Chat') | |
and ( (use_openai and OPENAI_API_KEY) or (not use_openai and user_llm_path) ) ): | |
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm, user_llm_path, usage) | |
#if ( pinecone_index_name or chroma_collection_name ) and embeddings and llm: | |
session_name = pinecone_index_name + chroma_collection_name + hist_fn | |
if usage != 'Chat': | |
if r_ingest.lower() == 'yes': | |
files = st.file_uploader( | |
'Upload Files', accept_multiple_files=True) | |
if files: | |
save_file(files) | |
all_texts, n_texts = load_files() | |
if usage == 'RAG': | |
docsearch = ingest(all_texts, use_pinecone, embeddings, pinecone_index_name, | |
chroma_collection_name, persist_directory) | |
docsearch_ready = True | |
else: | |
st.write( | |
'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.') | |
docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name, | |
embeddings, chroma_collection_name, persist_directory) | |
docsearch_ready = True | |
else: | |
docsearch_ready = True | |
if docsearch_ready: | |
prompt = setup_prompt(r_llm, usage) | |
#if usage == 'RAG' or usage == 'Chat': | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer') | |
if usage == 'RAG': | |
# number of sources (split-documents when ingesting files); default is 4 | |
k = min([20, n_texts]) | |
retriever = setup_retriever(docsearch, k) | |
CRqa = ConversationalRetrievalChain.from_llm( | |
llm, | |
chain_type="stuff", | |
retriever=retriever, | |
memory=memory, | |
return_source_documents=True, | |
combine_docs_chain_kwargs={'prompt': prompt}, | |
) | |
elif usage == 'Chat': | |
CRqa = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
) | |
elif usage == 'Task': | |
CRqa = load_qa_chain( | |
llm=llm, | |
chain_type="stuff", | |
prompt=prompt | |
) | |
st.title(':blue[Chatbot]') | |
# Get user input | |
query = st.text_area('Enter your question:', height=10, | |
placeholder='''Summarize the context. | |
\nAfter typing your question, click on SUBMIT to send it to the bot.''') | |
submitted = st.button('SUBMIT') | |
CHAT_HISTORY_FILENAME = f"chat_history/{session_name}_chat_hist.json" | |
chat_history = load_chat_history(CHAT_HISTORY_FILENAME) | |
st.markdown('<style>.my_title { font-weight: bold; color: red; }</style>', unsafe_allow_html=True) | |
if query and submitted: | |
# Generate a reply based on the user input and chat history | |
chat_history = [(user, bot) | |
for user, bot in chat_history] | |
if usage == 'RAG': | |
reply, source = get_response(query, chat_history, CRqa) | |
elif usage == 'Chat': | |
reply = CRqa({"question": query, "chat_history": chat_history, "return_only_outputs": True}) | |
reply = reply['text'] | |
elif usage == 'Task': | |
reply = [] | |
for a_text in all_texts: | |
output_text = CRqa.run(input_documents=[a_text], question=query ) | |
reply.append ( output_text ) | |
# Update the chat history with the user input and system response | |
chat_history.append(('User', query)) | |
chat_history.append(('Bot', reply)) | |
save_chat_history(chat_history, CHAT_HISTORY_FILENAME) | |
c = chat_history[-4:] | |
if len(chat_history) >= 4: | |
latest_chats = [c[2],c[3],c[0],c[1]] | |
else: | |
latest_chats = c | |
if latest_chats: | |
chat_history_str1 = '<br>'.join([f'<span class=\"my_title\">{x[0]}:</span> {x[1]}' for x in latest_chats]) | |
st.markdown(f'<div class=\"chat-record\">{chat_history_str1}</div>', unsafe_allow_html=True) | |
if usage == 'RAG' and reply and source: | |
# Display sources | |
for i, source_i in enumerate(source): | |
if i < k_sources: | |
if len(source_i.page_content) > 400: | |
page_content = source_i.page_content[:400] | |
else: | |
page_content = source_i.page_content | |
if source_i.metadata: | |
metadata_source = source_i.metadata['source'] | |
st.markdown(f"<h3 class='my_title'>Source {i+1}: {metadata_source}</h3> <br> {page_content}", unsafe_allow_html=True) | |
else: | |
st.markdown(f"<h3 class='my_title'>Source {i+1}: </h3> <br> {page_content}", unsafe_allow_html=True) | |
all_chats = chat_history | |
all_chat_history_str = '\n'.join( | |
[f'{x[0]}: {x[1]}' for x in all_chats]) | |
st.title(':blue[All chat records]') | |
st.text_area('Chat records in ascending order:', value=all_chat_history_str, height=250, label_visibility='collapsed') | |
if __name__ == '__main__': | |
main(pinecone_index_name, chroma_collection_name, persist_directory, | |
docsearch_ready, directory_name) | |