Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import copy | |
from dataclasses import dataclass, field | |
import json | |
from typing import Dict, Sequence, Optional | |
import torch | |
import transformers | |
from bunny.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN | |
from torch.utils.data import Dataset | |
from bunny import conversation as conversation_lib | |
from bunny.util.mm_utils import tokenizer_image_token | |
from PIL import Image | |
class DataArguments: | |
data_path: str = field(default=None, metadata={"help": "Path to the training data."}) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = True | |
image_folder: Optional[str] = field(default=None) | |
image_aspect_ratio: str = field(default=None) | |
def preprocess_multimodal( | |
sources: Sequence[str], | |
data_args: DataArguments | |
) -> Dict: | |
is_multimodal = data_args.is_multimodal | |
if not is_multimodal: | |
return sources | |
for source in sources: | |
for sentence in source: | |
if DEFAULT_IMAGE_TOKEN in sentence['value']: | |
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() | |
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] | |
sentence['value'] = sentence['value'].strip() | |
replace_token = DEFAULT_IMAGE_TOKEN | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
return sources | |
def preprocess_bunny( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids = torch.stack( | |
[tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 0 | |
end_token_cnt = 0 | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 1 | |
round_len += 1 | |
end_token_cnt += 1 | |
target[cur_len: cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if tokenizer.pad_token_id == tokenizer.eos_token_id: | |
cur_len -= end_token_cnt | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_bunny_with_bos( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_image: | |
input_ids = torch.stack( | |
[tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
end_token_cnt = 0 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_image: | |
round_len = len(tokenizer_image_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
target[cur_len: cur_len + instruction_len] = IGNORE_INDEX | |
end_token_cnt += 1 | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if tokenizer.pad_token_id == tokenizer.eos_token_id: | |
cur_len -= end_token_cnt | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_plain( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
assert len(source) == 2 | |
assert DEFAULT_IMAGE_TOKEN in source[0]['value'] | |
source[0]['value'] = DEFAULT_IMAGE_TOKEN | |
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep | |
conversations.append(conversation) | |
# tokenize conversations | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) | |
target[:tokenized_len] = IGNORE_INDEX | |
return dict(input_ids=input_ids, labels=targets) | |
def preprocess( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False | |
) -> Dict: | |
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: | |
return preprocess_plain(sources, tokenizer) | |
if conversation_lib.default_conversation.version == "bunny": | |
return preprocess_bunny(sources, tokenizer, has_image=has_image) | |
elif conversation_lib.default_conversation.version in {"minicpm", "llama", "phi3"}: | |
return preprocess_bunny_with_bos(sources, tokenizer, has_image=has_image) | |
class LazySupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__(self, data_path: str, | |
tokenizer: transformers.PreTrainedTokenizer, | |
data_args: DataArguments): | |
super(LazySupervisedDataset, self).__init__() | |
list_data_dict = json.load(open(data_path, "r")) | |
print("Formatting inputs...Skip in lazy mode") | |
self.tokenizer = tokenizer | |
self.list_data_dict = list_data_dict | |
self.data_args = data_args | |
def __len__(self): | |
return len(self.list_data_dict) | |
def lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
img_tokens = 128 if 'image' in sample else 0 | |
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) | |
return length_list | |
def modality_lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) | |
cur_len = cur_len if 'image' in sample else -cur_len | |
length_list.append(cur_len) | |
return length_list | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
sources = self.list_data_dict[i] | |
if isinstance(i, int): | |
sources = [sources] | |
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
if 'image' in sources[0]: | |
image_file = self.list_data_dict[i]['image'] | |
image_folder = self.data_args.image_folder | |
processor = self.data_args.image_processor | |
image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') | |
if self.data_args.image_aspect_ratio == 'pad': | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) | |
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
else: | |
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
sources = preprocess_multimodal( | |
copy.deepcopy([e["conversations"] for e in sources]), self.data_args) | |
else: | |
sources = copy.deepcopy([e["conversations"] for e in sources]) | |
data_dict = preprocess( | |
sources, | |
self.tokenizer, | |
has_image=('image' in self.list_data_dict[i])) | |
if isinstance(i, int): | |
data_dict = dict(input_ids=data_dict["input_ids"][0], | |
labels=data_dict["labels"][0]) | |
# image exist in the data | |
if 'image' in self.list_data_dict[i]: | |
data_dict['image'] = image | |
elif self.data_args.is_multimodal: | |
# image does not exist in the data, but the model is multimodal | |
crop_size = self.data_args.image_processor.crop_size | |
data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) | |
return data_dict | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels = tuple([instance[key] for instance in instances] | |
for key in ("input_ids", "labels")) | |
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id: | |
for input_id in input_ids: | |
input_id[input_id == self.tokenizer.eos_token_id] = -300 | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, | |
batch_first=True, | |
padding_value=self.tokenizer.pad_token_id) | |
labels = torch.nn.utils.rnn.pad_sequence( | |
labels, | |
batch_first=True, | |
padding_value=IGNORE_INDEX) | |
input_ids = input_ids[:, :self.tokenizer.model_max_length] | |
attention_mask = input_ids.ne(self.tokenizer.pad_token_id) | |
labels = labels[:, :self.tokenizer.model_max_length] | |
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id: | |
for input_id in input_ids: | |
input_id[input_id == -300] = self.tokenizer.eos_token_id | |
batch = dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=attention_mask, | |
) | |
if 'image' in instances[0]: | |
images = [instance['image'] for instance in instances] | |
if all(x is not None and x.shape == images[0].shape for x in images): | |
batch['images'] = torch.stack(images) | |
else: | |
batch['images'] = images | |
return batch | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, | |
data_args) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
train_dataset = LazySupervisedDataset(tokenizer=tokenizer, | |
data_path=data_args.data_path, | |
data_args=data_args) | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, | |
eval_dataset=None, | |
data_collator=data_collator) | |