Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os, gc, torch
|
3 |
from datetime import datetime
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
@@ -14,6 +14,7 @@ os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (muc
|
|
14 |
from rwkv.model import RWKV
|
15 |
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
|
16 |
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
|
|
|
17 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
18 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
19 |
|
@@ -57,9 +58,6 @@ def evaluate(
|
|
57 |
input = input.strip()
|
58 |
ctx = generate_prompt(instruction, input)
|
59 |
|
60 |
-
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
61 |
-
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
62 |
-
|
63 |
all_tokens = []
|
64 |
out_last = 0
|
65 |
out_str = ''
|
@@ -84,41 +82,222 @@ def evaluate(
|
|
84 |
out_str += tmp
|
85 |
yield out_str.strip()
|
86 |
out_last = i + 1
|
|
|
|
|
|
|
|
|
87 |
gc.collect()
|
88 |
torch.cuda.empty_cache()
|
89 |
yield out_str.strip()
|
90 |
|
91 |
examples = [
|
92 |
-
["Tell me about ravens.", "", 150, 1.
|
93 |
-
["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.
|
94 |
-
["Write a song about ravens.", "", 150, 1.
|
95 |
-
["Explain the following metaphor: Life is like cats.", "", 150, 1.
|
96 |
-
["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.
|
97 |
-
["Generate a list of adjectives that describe a person as brave.", "", 150, 1.
|
98 |
-
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.
|
99 |
]
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
]
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os, gc, copy, torch
|
3 |
from datetime import datetime
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
|
|
14 |
from rwkv.model import RWKV
|
15 |
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
|
16 |
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
|
17 |
+
# model = RWKV(model='D:/ChatRWKV/RWKV-4-Raven-7B-v9-Eng99%-Other1%-20230412-ctx8192.pth', strategy='cuda fp16i8 *10 -> cuda fp16')
|
18 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
19 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
20 |
|
|
|
58 |
input = input.strip()
|
59 |
ctx = generate_prompt(instruction, input)
|
60 |
|
|
|
|
|
|
|
61 |
all_tokens = []
|
62 |
out_last = 0
|
63 |
out_str = ''
|
|
|
82 |
out_str += tmp
|
83 |
yield out_str.strip()
|
84 |
out_last = i + 1
|
85 |
+
|
86 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
87 |
+
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
88 |
+
|
89 |
gc.collect()
|
90 |
torch.cuda.empty_cache()
|
91 |
yield out_str.strip()
|
92 |
|
93 |
examples = [
|
94 |
+
["Tell me about ravens.", "", 150, 1.2, 0.5, 0.3, 0.3],
|
95 |
+
["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.2, 0.5, 0.3, 0.3],
|
96 |
+
["Write a song about ravens.", "", 150, 1.2, 0.5, 0.3, 0.3],
|
97 |
+
["Explain the following metaphor: Life is like cats.", "", 150, 1.2, 0.5, 0.3, 0.3],
|
98 |
+
["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.2, 0.5, 0.3, 0.3],
|
99 |
+
["Generate a list of adjectives that describe a person as brave.", "", 150, 1.2, 0.5, 0.3, 0.3],
|
100 |
+
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.2, 0.5, 0.3, 0.3],
|
101 |
]
|
102 |
|
103 |
+
##########################################################################
|
104 |
+
|
105 |
+
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.
|
106 |
+
|
107 |
+
<|user|>: Hi <|bot|>, Would you like to chat with me for a while?
|
108 |
+
|
109 |
+
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
|
110 |
+
'''
|
111 |
+
|
112 |
+
def user(message, chatbot):
|
113 |
+
chatbot = chatbot or []
|
114 |
+
print(f"User: {message}")
|
115 |
+
return "", chatbot + [[message, None]]
|
116 |
+
|
117 |
+
def alternative(chatbot, history):
|
118 |
+
if not chatbot or not history:
|
119 |
+
return chatbot, history
|
120 |
+
|
121 |
+
chatbot[-1][1] = None
|
122 |
+
history[0] = copy.deepcopy(history[1])
|
123 |
+
|
124 |
+
return chatbot, history
|
125 |
+
|
126 |
+
def chat(
|
127 |
+
prompt,
|
128 |
+
user,
|
129 |
+
bot,
|
130 |
+
chatbot,
|
131 |
+
history,
|
132 |
+
temperature=1.0,
|
133 |
+
top_p=0.8,
|
134 |
+
presence_penalty=0.1,
|
135 |
+
count_penalty=0.1,
|
136 |
+
):
|
137 |
+
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
|
138 |
+
alpha_frequency=float(count_penalty),
|
139 |
+
alpha_presence=float(presence_penalty),
|
140 |
+
token_ban=[], # ban the generation of some tokens
|
141 |
+
token_stop=[]) # stop generation whenever you see any token here
|
142 |
+
|
143 |
+
if not chatbot:
|
144 |
+
return chatbot, history
|
145 |
+
|
146 |
+
message = chatbot[-1][0]
|
147 |
+
message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
|
148 |
+
ctx = f"{user}: {message}\n\n{bot}:"
|
149 |
+
|
150 |
+
if not history:
|
151 |
+
prompt = prompt.replace("<|user|>", user.strip())
|
152 |
+
prompt = prompt.replace("<|bot|>", bot.strip())
|
153 |
+
prompt = prompt.strip()
|
154 |
+
prompt = f"\n{prompt}\n\n"
|
155 |
+
|
156 |
+
out, state = model.forward(pipeline.encode(prompt), None)
|
157 |
+
history = [state, None, []] # [state, state_pre, tokens]
|
158 |
+
print("History reloaded.")
|
159 |
+
|
160 |
+
[state, _, all_tokens] = history
|
161 |
+
state_pre_0 = copy.deepcopy(state)
|
162 |
+
|
163 |
+
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)
|
164 |
+
state_pre_1 = copy.deepcopy(state) # For recovery
|
165 |
+
|
166 |
+
print("Bot:", end='')
|
167 |
+
|
168 |
+
begin = len(all_tokens)
|
169 |
+
out_last = begin
|
170 |
+
out_str: str = ''
|
171 |
+
occurrence = {}
|
172 |
+
for i in range(300):
|
173 |
+
if i <= 0:
|
174 |
+
nl_bias = -float('inf')
|
175 |
+
elif i <= 30:
|
176 |
+
nl_bias = (i - 30) * 0.1
|
177 |
+
elif i <= 130:
|
178 |
+
nl_bias = 0
|
179 |
+
else:
|
180 |
+
nl_bias = (i - 130) * 0.25
|
181 |
+
out[187] += nl_bias
|
182 |
+
for n in occurrence:
|
183 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
184 |
+
|
185 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
186 |
+
next_tokens = [token]
|
187 |
+
if token == 0:
|
188 |
+
next_tokens = pipeline.encode('\n\n')
|
189 |
+
all_tokens += next_tokens
|
190 |
+
|
191 |
+
if token not in occurrence:
|
192 |
+
occurrence[token] = 1
|
193 |
+
else:
|
194 |
+
occurrence[token] += 1
|
195 |
+
|
196 |
+
out, state = model.forward(next_tokens, state)
|
197 |
+
|
198 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
199 |
+
if '\ufffd' not in tmp:
|
200 |
+
print(tmp, end='', flush=True)
|
201 |
+
out_last = begin + i + 1
|
202 |
+
out_str += tmp
|
203 |
+
|
204 |
+
chatbot[-1][1] = out_str.strip()
|
205 |
+
history = [state, all_tokens]
|
206 |
+
yield chatbot, history
|
207 |
+
|
208 |
+
out_str = pipeline.decode(all_tokens[begin:])
|
209 |
+
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')
|
210 |
+
|
211 |
+
if '\n\n' in out_str:
|
212 |
+
break
|
213 |
+
|
214 |
+
# State recovery
|
215 |
+
if f'{user}:' in out_str or f'{bot}:' in out_str:
|
216 |
+
idx_user = out_str.find(f'{user}:')
|
217 |
+
idx_user = len(out_str) if idx_user == -1 else idx_user
|
218 |
+
idx_bot = out_str.find(f'{bot}:')
|
219 |
+
idx_bot = len(out_str) if idx_bot == -1 else idx_bot
|
220 |
+
idx = min(idx_user, idx_bot)
|
221 |
+
|
222 |
+
if idx < len(out_str):
|
223 |
+
out_str = f" {out_str[:idx].strip()}\n\n"
|
224 |
+
tokens = pipeline.encode(out_str)
|
225 |
+
|
226 |
+
all_tokens = all_tokens[:begin] + tokens
|
227 |
+
out, state = model.forward(tokens, state_pre_1)
|
228 |
+
break
|
229 |
+
|
230 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
231 |
+
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
232 |
+
|
233 |
+
gc.collect()
|
234 |
+
torch.cuda.empty_cache()
|
235 |
+
|
236 |
+
chatbot[-1][1] = out_str.strip()
|
237 |
+
history = [state, state_pre_0, all_tokens]
|
238 |
+
yield chatbot, history
|
239 |
+
|
240 |
+
##########################################################################
|
241 |
+
|
242 |
+
with gr.Blocks(title=title) as demo:
|
243 |
+
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🐦Raven - {title}</h1>\n</div>")
|
244 |
+
with gr.Tab("Instruct mode"):
|
245 |
+
gr.Markdown(f"Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}. Finetuned on alpaca, gpt4all, codealpaca and more. For best results, *** keep you prompt short and clear ***. <b>UPDATE: now with Chat (see above, as a tab)</b>.")
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column():
|
248 |
+
instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.")
|
249 |
+
input = gr.Textbox(lines=2, label="Input", placeholder="none")
|
250 |
+
token_count = gr.Slider(10, 200, label="Max Tokens", step=10, value=150)
|
251 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
|
252 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
|
253 |
+
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
|
254 |
+
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
|
255 |
+
with gr.Column():
|
256 |
+
with gr.Row():
|
257 |
+
submit = gr.Button("Submit", variant="primary")
|
258 |
+
clear = gr.Button("Clear", variant="secondary")
|
259 |
+
output = gr.Textbox(label="Output", lines=5)
|
260 |
+
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
261 |
+
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
262 |
+
clear.click(lambda: None, [], [output])
|
263 |
+
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
|
264 |
+
|
265 |
+
with gr.Tab("Chat (Experimental - Might be buggy - use ChatRWKV for reference)"):
|
266 |
+
gr.Markdown(f'''<b>*** The length of response is restricted in this demo. Use ChatRWKV for longer generations. ***</b> Say "go on" or "continue" can sometimes continue the response. If you'd like to edit the scenario, make sure to follow the exact same format: empty lines between (and only between) different speakers. Changes only take effect after you press [Clear]. <b>The default "Bob" & "Alice" names work the best.</b>''', label="Description")
|
267 |
+
with gr.Row():
|
268 |
+
with gr.Column():
|
269 |
+
chatbot = gr.Chatbot()
|
270 |
+
state = gr.State()
|
271 |
+
message = gr.Textbox(label="Message", value="Write me a python code to land on moon.")
|
272 |
+
with gr.Row():
|
273 |
+
send = gr.Button("Send", variant="primary")
|
274 |
+
alt = gr.Button("Alternative", variant="secondary")
|
275 |
+
clear = gr.Button("Clear", variant="secondary")
|
276 |
+
with gr.Column():
|
277 |
+
with gr.Row():
|
278 |
+
user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob")
|
279 |
+
bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice")
|
280 |
+
prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro)
|
281 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
|
282 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
|
283 |
+
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
|
284 |
+
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
|
285 |
+
chat_inputs = [
|
286 |
+
prompt,
|
287 |
+
user_name,
|
288 |
+
bot_name,
|
289 |
+
chatbot,
|
290 |
+
state,
|
291 |
+
temperature,
|
292 |
+
top_p,
|
293 |
+
presence_penalty,
|
294 |
+
count_penalty
|
295 |
+
]
|
296 |
+
chat_outputs = [chatbot, state]
|
297 |
+
message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
|
298 |
+
send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
|
299 |
+
alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs)
|
300 |
+
clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False)
|
301 |
+
|
302 |
+
demo.queue(concurrency_count=1, max_size=10)
|
303 |
+
demo.launch(share=False)
|