simulatorAldi / classes.py
Manoj
ch
16e3779
import numpy as np
from scipy.optimize import minimize, LinearConstraint, NonlinearConstraint
from collections import OrderedDict
import pandas as pd
from numerize.numerize import numerize
def class_to_dict(class_instance):
attr_dict = {}
if isinstance(class_instance, Channel):
attr_dict["type"] = "Channel"
attr_dict["name"] = class_instance.name
attr_dict["dates"] = class_instance.dates
attr_dict["spends"] = class_instance.actual_spends
attr_dict["conversion_rate"] = class_instance.conversion_rate
attr_dict["modified_spends"] = class_instance.modified_spends
attr_dict["modified_sales"] = class_instance.modified_sales
attr_dict["response_curve_type"] = class_instance.response_curve_type
attr_dict["response_curve_params"] = class_instance.response_curve_params
attr_dict["penalty"] = class_instance.penalty
attr_dict["bounds"] = class_instance.bounds
attr_dict["actual_total_spends"] = class_instance.actual_total_spends
attr_dict["actual_total_sales"] = class_instance.actual_total_sales
attr_dict["modified_total_spends"] = class_instance.modified_total_spends
attr_dict["modified_total_sales"] = class_instance.modified_total_sales
attr_dict["actual_mroi"] = class_instance.get_marginal_roi("actual")
attr_dict["modified_mroi"] = class_instance.get_marginal_roi("modified")
elif isinstance(class_instance, Scenario):
attr_dict["type"] = "Scenario"
attr_dict["name"] = class_instance.name
channels = []
for channel in class_instance.channels.values():
channels.append(class_to_dict(channel))
attr_dict["channels"] = channels
attr_dict["constant"] = class_instance.constant
attr_dict["correction"] = class_instance.correction
attr_dict["actual_total_spends"] = class_instance.actual_total_spends
attr_dict["actual_total_sales"] = class_instance.actual_total_sales
attr_dict["modified_total_spends"] = class_instance.modified_total_spends
attr_dict["modified_total_sales"] = class_instance.modified_total_sales
return attr_dict
def class_from_dict(attr_dict):
if attr_dict["type"] == "Channel":
return Channel.from_dict(attr_dict)
elif attr_dict["type"] == "Scenario":
return Scenario.from_dict(attr_dict)
class Channel:
def __init__(
self,
name,
dates,
spends,
response_curve_type,
response_curve_params,
bounds,
conversion_rate=1,
modified_spends=None,
penalty=True,
):
self.name = name
self.dates = dates
self.conversion_rate = conversion_rate
self.actual_spends = spends.copy()
if modified_spends is None:
self.modified_spends = self.actual_spends.copy()
else:
self.modified_spends = modified_spends
self.response_curve_type = response_curve_type
self.response_curve_params = response_curve_params
self.bounds = bounds
self.penalty = penalty
self.upper_limit = self.actual_spends.max() + self.actual_spends.std()
self.power = np.ceil(np.log(self.actual_spends.max()) / np.log(10)) - 3
self.actual_sales = None
self.actual_sales = self.response_curve(self.actual_spends)
self.actual_total_spends = self.actual_spends.sum()
self.actual_total_sales = self.actual_sales.sum()
self.modified_sales = self.calculate_sales()
self.modified_total_spends = self.modified_spends.sum()
self.modified_total_sales = self.modified_sales.sum()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
def update_penalty(self, penalty):
self.penalty = penalty
def _modify_spends(self, spends_array, total_spends):
return spends_array * total_spends / spends_array.sum()
def modify_spends(self, total_spends):
self.modified_spends = (
self.modified_spends * total_spends / self.modified_spends.sum()
)
def calculate_sales(self):
return self.response_curve(self.modified_spends)
def response_curve(self, x):
if self.penalty:
x = np.where(
x < self.upper_limit,
x,
self.upper_limit + (x - self.upper_limit) * self.upper_limit / x,
)
if self.response_curve_type == "s-curve":
if self.power >= 0:
x = x / 10**self.power
x = x.astype("float64")
K = self.response_curve_params["K"]
b = self.response_curve_params["b"]
a = self.response_curve_params["a"]
x0 = self.response_curve_params["x0"]
sales = K / (1 + b * np.exp(-a * (x - x0)))
if self.response_curve_type == "linear":
beta = self.response_curve_params["beta"]
sales = beta * x
return sales
def get_marginal_roi(self, flag):
K = self.response_curve_params["K"]
a = self.response_curve_params["a"]
# x = self.modified_total_spends
# if self.power >= 0 :
# x = x / 10**self.power
# x = x.astype('float64')
# return K*b*a*np.exp(-a*(x-x0)) / (1 + b * np.exp(-a*(x - x0)))**2
if flag == "actual":
y = self.response_curve(self.actual_spends)
# spends_array = self.actual_spends
# total_spends = self.actual_total_spends
# total_sales = self.actual_total_sales
else:
y = self.response_curve(self.modified_spends)
# spends_array = self.modified_spends
# total_spends = self.modified_total_spends
# total_sales = self.modified_total_sales
# spends_inc_1 = self._modify_spends(spends_array, total_spends+1)
mroi = a * (y) * (1 - y / K)
return mroi.sum() / len(self.modified_spends)
# spends_inc_1 = self.spends_array + 1
# new_total_sales = self.response_curve(spends_inc_1).sum()
# return (new_total_sales - total_sales) / len(self.modified_spends)
def update(self, total_spends):
self.modify_spends(total_spends)
self.modified_sales = self.calculate_sales()
self.modified_total_spends = self.modified_spends.sum()
self.modified_total_sales = self.modified_sales.sum()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
def intialize(self):
self.new_spends = self.old_spends
def __str__(self):
return f"{self.name},{self.actual_total_sales}, {self.modified_total_spends}"
@classmethod
def from_dict(cls, attr_dict):
return Channel(
name=attr_dict["name"],
dates=attr_dict["dates"],
spends=attr_dict["spends"],
bounds=attr_dict["bounds"],
modified_spends=attr_dict["modified_spends"],
response_curve_type=attr_dict["response_curve_type"],
response_curve_params=attr_dict["response_curve_params"],
penalty=attr_dict["penalty"],
)
def update_response_curves(self, response_curve_params):
self.response_curve_params = response_curve_params
class Scenario:
def __init__(self, name, channels, constant, correction):
self.name = name
self.channels = channels
self.constant = constant
self.correction = correction
self.actual_total_spends = self.calculate_modified_total_spends()
self.actual_total_sales = self.calculate_actual_total_sales()
self.modified_total_sales = self.calculate_modified_total_sales()
self.modified_total_spends = self.calculate_modified_total_spends()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
def update_penalty(self, value):
for channel in self.channels.values():
channel.update_penalty(value)
def calculate_modified_total_spends(self):
total_actual_spends = 0.0
for channel in self.channels.values():
total_actual_spends += channel.actual_total_spends * channel.conversion_rate
return total_actual_spends
def calculate_modified_total_spends(self):
total_modified_spends = 0.0
for channel in self.channels.values():
# import streamlit as st
# st.write(channel.modified_total_spends )
total_modified_spends += (
channel.modified_total_spends * channel.conversion_rate
)
return total_modified_spends
def calculate_actual_total_sales(self):
total_actual_sales = self.constant.sum() + self.correction.sum()
for channel in self.channels.values():
total_actual_sales += channel.actual_total_sales
return total_actual_sales
def calculate_modified_total_sales(self):
total_modified_sales = self.constant.sum() + self.correction.sum()
for channel in self.channels.values():
total_modified_sales += channel.modified_total_sales
return total_modified_sales
def update(self, channel_name, modified_spends):
self.channels[channel_name].update(modified_spends)
self.modified_total_sales = self.calculate_modified_total_sales()
self.modified_total_spends = self.calculate_modified_total_spends()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
# def optimize_spends(self, sales_percent, channels_list, algo="COBYLA"):
# desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0)
# def constraint(x):
# for ch, spends in zip(channels_list, x):
# self.update(ch, spends)
# return self.modified_total_sales - desired_sales
# bounds = []
# for ch in channels_list:
# bounds.append(
# (1 + np.array([-50.0, 100.0]) / 100.0)
# * self.channels[ch].actual_total_spends
# )
# initial_point = []
# for bound in bounds:
# initial_point.append(bound[0])
# power = np.ceil(np.log(sum(initial_point)) / np.log(10))
# constraints = [NonlinearConstraint(constraint, -1.0, 1.0)]
# res = minimize(
# lambda x: sum(x) / 10 ** (power),
# bounds=bounds,
# x0=initial_point,
# constraints=constraints,
# method=algo,
# options={"maxiter": int(2e7), "catol": 1},
# )
# for channel_name, modified_spends in zip(channels_list, res.x):
# self.update(channel_name, modified_spends)
# return zip(channels_list, res.x)
def optimize_spends(self, sales_percent, channels_list, algo="trust-constr"):
print("%"*100)
desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0)
def constraint(x):
for ch, spends in zip(channels_list, x):
self.update(ch, spends)
return self.modified_total_sales - desired_sales
bounds = []
for ch in channels_list:
bounds.append(
(1+np.array([-50.0, 100.0]) / 100.0)
* self.channels[ch].actual_total_spends
)
initial_point = []
for bound in bounds:
initial_point.append(bound[0])
power = np.ceil(np.log(sum(initial_point)) / np.log(10))
constraints = [NonlinearConstraint(constraint, -1.0, 1.0)]
res = minimize(
lambda x: sum(x) / 10 ** (power),
bounds=bounds,
x0=initial_point,
constraints=constraints,
method=algo,
options={"maxiter": int(2e7), "xtol": 10},
)
for channel_name, modified_spends in zip(channels_list, res.x):
self.update(channel_name, modified_spends)
return zip(channels_list, res.x)
def optimize(self, spends_percent, channels_list):
# channels_list = self.channels.keys()
num_channels = len(channels_list)
spends_constant = []
spends_constraint = 0.0
for channel_name in channels_list:
# spends_constraint += self.channels[channel_name].modified_total_spends
spends_constant.append(self.channels[channel_name].conversion_rate)
spends_constraint += (
self.channels[channel_name].actual_total_spends
* self.channels[channel_name].conversion_rate
)
spends_constraint = spends_constraint * (1 + spends_percent / 100)
# constraint= LinearConstraint(np.ones((num_channels,)), lb = spends_constraint, ub = spends_constraint)
constraint = LinearConstraint(
np.array(spends_constant),
lb=spends_constraint,
ub=spends_constraint,
)
bounds = []
old_spends = []
for channel_name in channels_list:
_channel_class = self.channels[channel_name]
channel_bounds = _channel_class.bounds
channel_actual_total_spends = _channel_class.actual_total_spends * (
(1 + spends_percent / 100)
)
old_spends.append(channel_actual_total_spends)
bounds.append((1+ channel_bounds / 100) * channel_actual_total_spends)
def objective_function(x):
for channel_name, modified_spends in zip(channels_list, x):
self.update(channel_name, modified_spends)
return -1 * self.modified_total_sales
print(bounds)
print("$"*100)
res = minimize(
lambda x: objective_function(x) / 1e3,
method="trust-constr",
x0=old_spends,
constraints=constraint,
bounds=bounds,
options={"maxiter": int(1e7), "xtol": 50},
)
# res = dual_annealing(
# objective_function,
# x0=old_spends,
# mi
# constraints=constraint,
# bounds=bounds,
# tol=1e-16
# )
print(res)
for channel_name, modified_spends in zip(channels_list, res.x):
self.update(channel_name, modified_spends)
return zip(channels_list, res.x)
def save(self):
details = {}
actual_list = []
modified_list = []
data = {}
channel_data = []
summary_rows = []
actual_list.append(
{
"name": "Total",
"Spends": self.actual_total_spends,
"Sales": self.actual_total_sales,
}
)
modified_list.append(
{
"name": "Total",
"Spends": self.modified_total_spends,
"Sales": self.modified_total_sales,
}
)
for channel in self.channels.values():
name_mod = channel.name.replace("_", " ")
if name_mod.lower().endswith(" imp"):
name_mod = name_mod.replace("Imp", " Impressions")
summary_rows.append(
[
name_mod,
channel.actual_total_spends,
channel.modified_total_spends,
channel.actual_total_sales,
channel.modified_total_sales,
round(channel.actual_total_sales / channel.actual_total_spends, 2),
round(
channel.modified_total_sales / channel.modified_total_spends,
2,
),
channel.get_marginal_roi("actual"),
channel.get_marginal_roi("modified"),
]
)
data[channel.name] = channel.modified_spends
data["Date"] = channel.dates
data["Sales"] = (
data.get("Sales", np.zeros((len(channel.dates),)))
+ channel.modified_sales
)
actual_list.append(
{
"name": channel.name,
"Spends": channel.actual_total_spends,
"Sales": channel.actual_total_sales,
"ROI": round(
channel.actual_total_sales / channel.actual_total_spends, 2
),
}
)
modified_list.append(
{
"name": channel.name,
"Spends": channel.modified_total_spends,
"Sales": channel.modified_total_sales,
"ROI": round(
channel.modified_total_sales / channel.modified_total_spends,
2,
),
"Marginal ROI": channel.get_marginal_roi("modified"),
}
)
channel_data.append(
{
"channel": channel.name,
"spends_act": channel.actual_total_spends,
"spends_mod": channel.modified_total_spends,
"sales_act": channel.actual_total_sales,
"sales_mod": channel.modified_total_sales,
}
)
summary_rows.append(
[
"Total",
self.actual_total_spends,
self.modified_total_spends,
self.actual_total_sales,
self.modified_total_sales,
round(self.actual_total_sales / self.actual_total_spends, 2),
round(self.modified_total_sales / self.modified_total_spends, 2),
0.0,
0.0,
]
)
details["Actual"] = actual_list
details["Modified"] = modified_list
columns_index = pd.MultiIndex.from_product(
[[""], ["Channel"]], names=["first", "second"]
)
columns_index = columns_index.append(
pd.MultiIndex.from_product(
[["Spends", "NRPU", "ROI", "MROI"], ["Actual", "Simulated"]],
names=["first", "second"],
)
)
details["Summary"] = pd.DataFrame(summary_rows, columns=columns_index)
data_df = pd.DataFrame(data)
channel_list = list(self.channels.keys())
data_df = data_df[["Date", *channel_list, "Sales"]]
details["download"] = {
"data_df": data_df,
"channels_df": pd.DataFrame(channel_data),
"total_spends_act": self.actual_total_spends,
"total_sales_act": self.actual_total_sales,
"total_spends_mod": self.modified_total_spends,
"total_sales_mod": self.modified_total_sales,
}
return details
@classmethod
def from_dict(cls, attr_dict):
channels_list = attr_dict["channels"]
channels = {
channel["name"]: class_from_dict(channel) for channel in channels_list
}
return Scenario(
name=attr_dict["name"],
channels=channels,
constant=attr_dict["constant"],
correction=attr_dict["correction"],
)