Pragya Jatav commited on
Commit
e015ebb
·
1 Parent(s): 68fa2e2

aesthetic changes 2

Browse files
__pycache__/Streamlit_functions.cpython-310.pyc CHANGED
Binary files a/__pycache__/Streamlit_functions.cpython-310.pyc and b/__pycache__/Streamlit_functions.cpython-310.pyc differ
 
__pycache__/response_curves_model_quality.cpython-310.pyc CHANGED
Binary files a/__pycache__/response_curves_model_quality.cpython-310.pyc and b/__pycache__/response_curves_model_quality.cpython-310.pyc differ
 
__pycache__/response_curves_model_quality_base.cpython-310.pyc CHANGED
Binary files a/__pycache__/response_curves_model_quality_base.cpython-310.pyc and b/__pycache__/response_curves_model_quality_base.cpython-310.pyc differ
 
pages/2_Scenario_Planner.py CHANGED
@@ -875,7 +875,7 @@ def scenario_planner_plots():
875
  # Add actual vs optimized spend bars
876
 
877
 
878
- fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['Actual_spend'], name='Actual',
879
  text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '
880
  # +
881
  # ' '+
@@ -884,7 +884,7 @@ def scenario_planner_plots():
884
  marker_color=light_blue))
885
 
886
 
887
- fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['Optimized_spend'], name='Optimized',
888
  text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' '
889
  # +
890
  # '</br> (' + optimized_spend_percentage.astype(int).astype(str) + '%)'
@@ -902,11 +902,11 @@ def scenario_planner_plots():
902
 
903
  # Add actual vs optimized Contribution
904
  fig = go.Figure()
905
- fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['Old_sales'],
906
  name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),textposition='outside',
907
  marker_color=light_blue,showlegend=True))
908
 
909
- fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['New_sales'],
910
  name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),textposition='outside',
911
  marker_color=light_orange, showlegend=True))
912
 
@@ -924,10 +924,10 @@ def scenario_planner_plots():
924
  # Add actual vs optimized Efficiency bars
925
  fig = go.Figure()
926
  summary_df_sorted_p = summary_df_sorted[summary_df_sorted['Channel_name']!="Panel"]
927
- fig.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'], y=summary_df_sorted_p['old_efficiency'],
928
  name='Actual Efficiency', text=summary_df_sorted_p['old_efficiency'].apply(format_number) ,textposition='outside',
929
  marker_color=light_blue,showlegend=True))
930
- fig.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'], y=summary_df_sorted_p['new_efficiency'],
931
  name='Optimized Efficiency',text=summary_df_sorted_p['new_efficiency'].apply(format_number),textposition='outside' ,
932
  marker_color=light_orange,showlegend=True))
933
 
 
875
  # Add actual vs optimized spend bars
876
 
877
 
878
+ fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Actual_spend'], name='Actual',
879
  text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '
880
  # +
881
  # ' '+
 
884
  marker_color=light_blue))
885
 
886
 
887
+ fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Optimized_spend'], name='Optimized',
888
  text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' '
889
  # +
890
  # '</br> (' + optimized_spend_percentage.astype(int).astype(str) + '%)'
 
902
 
903
  # Add actual vs optimized Contribution
904
  fig = go.Figure()
905
+ fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Old_sales'],
906
  name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),textposition='outside',
907
  marker_color=light_blue,showlegend=True))
908
 
909
+ fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['New_sales'],
910
  name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),textposition='outside',
911
  marker_color=light_orange, showlegend=True))
912
 
 
924
  # Add actual vs optimized Efficiency bars
925
  fig = go.Figure()
926
  summary_df_sorted_p = summary_df_sorted[summary_df_sorted['Channel_name']!="Panel"]
927
+ fig.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'].apply(channel_name_formating), y=summary_df_sorted_p['old_efficiency'],
928
  name='Actual Efficiency', text=summary_df_sorted_p['old_efficiency'].apply(format_number) ,textposition='outside',
929
  marker_color=light_blue,showlegend=True))
930
+ fig.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'].apply(channel_name_formating), y=summary_df_sorted_p['new_efficiency'],
931
  name='Optimized Efficiency',text=summary_df_sorted_p['new_efficiency'].apply(format_number),textposition='outside' ,
932
  marker_color=light_orange,showlegend=True))
933
 
response_curves_model_quality.py CHANGED
@@ -6,6 +6,7 @@ from sklearn.preprocessing import MinMaxScaler
6
  import warnings
7
  warnings.filterwarnings("ignore")
8
  import plotly.graph_objects as go
 
9
 
10
  ## reading input data
11
  df= pd.read_csv('response_curves_input_file.csv')
@@ -479,7 +480,7 @@ def response_curves(channel,x_modified,y_modified):
479
 
480
  # Update layout with titles
481
  fig.update_layout(
482
- title=channel+' Response Curve',
483
  xaxis_title='Weekly Spends',
484
  yaxis_title='Prospects'
485
  )
 
6
  import warnings
7
  warnings.filterwarnings("ignore")
8
  import plotly.graph_objects as go
9
+ from utilities import (channel_name_formating)
10
 
11
  ## reading input data
12
  df= pd.read_csv('response_curves_input_file.csv')
 
480
 
481
  # Update layout with titles
482
  fig.update_layout(
483
+ title=channel_name_formating(channel)+' Response Curve',
484
  xaxis_title='Weekly Spends',
485
  yaxis_title='Prospects'
486
  )
response_curves_model_quality_base.py CHANGED
@@ -6,7 +6,7 @@ from sklearn.preprocessing import MinMaxScaler
6
  import warnings
7
  warnings.filterwarnings("ignore")
8
  import plotly.graph_objects as go
9
-
10
  ## reading input data
11
  df= pd.read_csv('response_curves_input_file.csv')
12
  df.dropna(inplace=True)
@@ -221,7 +221,7 @@ def response_curves(channel,chart_typ):
221
  # Update layout with titles
222
  fig.update_layout(
223
  width=700, height=500,
224
- title=channel+' Response Curve',
225
  xaxis_title='Weekly Spends',
226
  yaxis_title='Prospects'
227
  )
 
6
  import warnings
7
  warnings.filterwarnings("ignore")
8
  import plotly.graph_objects as go
9
+ from utilities_with_panel import (channel_name_formating)
10
  ## reading input data
11
  df= pd.read_csv('response_curves_input_file.csv')
12
  df.dropna(inplace=True)
 
221
  # Update layout with titles
222
  fig.update_layout(
223
  width=700, height=500,
224
+ title=channel_name_formating(channel)+' Response Curve',
225
  xaxis_title='Weekly Spends',
226
  yaxis_title='Prospects'
227
  )
summary_df.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dad0d11118c0472a05a46ab895793cc2cdb21bea157bdc8a39e31d7d42ffebfa
3
  size 1822
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb50f23e164ddf0cae9b81a28e47f97561d83e444b951bcf2e8192d70eadc7ce
3
  size 1822