Spaces:
Running
Running
from numerize.numerize import numerize | |
import streamlit as st | |
import pandas as pd | |
import json | |
from classes import Channel, Scenario | |
import numpy as np | |
from plotly.subplots import make_subplots | |
import plotly.graph_objects as go | |
from classes import class_to_dict | |
from collections import OrderedDict | |
import io | |
import plotly | |
from pathlib import Path | |
import pickle | |
import yaml | |
from yaml import SafeLoader | |
from streamlit.components.v1 import html | |
import smtplib | |
from scipy.optimize import curve_fit | |
from sklearn.metrics import r2_score | |
from classes import class_from_dict | |
import os | |
import base64 | |
color_palette = [ | |
"#F3F3F0", | |
"#5E7D7E", | |
"#2FA1FF", | |
"#00EDED", | |
"#00EAE4", | |
"#304550", | |
"#EDEBEB", | |
"#7FBEFD", | |
"#003059", | |
"#A2F3F3", | |
"#E1D6E2", | |
"#B6B6B6", | |
] | |
CURRENCY_INDICATOR = '$' | |
import streamlit_authenticator as stauth | |
def load_authenticator(): | |
with open("config.yaml") as file: | |
config = yaml.load(file, Loader=SafeLoader) | |
st.session_state["config"] = config | |
authenticator = stauth.Authenticate( | |
credentials=config["credentials"], | |
cookie_name=config["cookie"]["name"], | |
key=config["cookie"]["key"], | |
cookie_expiry_days=config["cookie"]["expiry_days"], | |
preauthorized=config["preauthorized"], | |
) | |
st.session_state["authenticator"] = authenticator | |
return authenticator | |
# Authentication | |
def authentication(): | |
with open("config.yaml") as file: | |
config = yaml.load(file, Loader=SafeLoader) | |
authenticator = stauth.Authenticate( | |
config["credentials"], | |
config["cookie"]["name"], | |
config["cookie"]["key"], | |
config["cookie"]["expiry_days"], | |
config["preauthorized"], | |
) | |
name, authentication_status, username = authenticator.login("Login", "main") | |
return authenticator, name, authentication_status, username | |
def nav_page(page_name, timeout_secs=3): | |
nav_script = """ | |
<script type="text/javascript"> | |
function attempt_nav_page(page_name, start_time, timeout_secs) { | |
var links = window.parent.document.getElementsByTagName("a"); | |
for (var i = 0; i < links.length; i++) { | |
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) { | |
links[i].click(); | |
return; | |
} | |
} | |
var elasped = new Date() - start_time; | |
if (elasped < timeout_secs * 1000) { | |
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs); | |
} else { | |
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s)."); | |
} | |
} | |
window.addEventListener("load", function() { | |
attempt_nav_page("%s", new Date(), %d); | |
}); | |
</script> | |
""" % ( | |
page_name, | |
timeout_secs, | |
) | |
html(nav_script) | |
# def load_local_css(file_name): | |
# with open(file_name) as f: | |
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
# def set_header(): | |
# return st.markdown(f"""<div class='main-header'> | |
# <h1>MMM LiME</h1> | |
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg "> | |
# </div>""", unsafe_allow_html=True) | |
path = os.path.dirname(__file__) | |
file_ = open(f"{path}/ALDI_2017.png", "rb") | |
contents = file_.read() | |
data_url = base64.b64encode(contents).decode("utf-8") | |
file_.close() | |
DATA_PATH = "./data" | |
IMAGES_PATH = "./data/images_224_224" | |
def load_local_css(file_name): | |
with open(file_name) as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
# def set_header(): | |
# return st.markdown(f"""<div class='main-header'> | |
# <h1>H & M Recommendations</h1> | |
# <img src="data:image;base64,{data_url}", alt="Logo"> | |
# </div>""", unsafe_allow_html=True) | |
path1 = os.path.dirname(__file__) | |
file_1 = open(f"{path}/ALDI_2017.png", "rb") | |
contents1 = file_1.read() | |
data_url1 = base64.b64encode(contents1).decode("utf-8") | |
file_1.close() | |
DATA_PATH1 = "./data" | |
IMAGES_PATH1 = "./data/images_224_224" | |
def set_header(): | |
return st.markdown( | |
f"""<div class='main-header'> | |
<!-- <h1></h1> --> | |
<div > | |
<img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo"> | |
</div>""", | |
unsafe_allow_html=True, | |
) | |
# def set_header(): | |
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path | |
# text = "LiME" | |
# return st.markdown(f"""<div class='main-header'> | |
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;"> | |
# <h1>{text}</h1> | |
# </div>""", unsafe_allow_html=True) | |
def s_curve(x, K, b, a, x0): | |
return K / (1 + b * np.exp(-a * (x - x0))) | |
def panel_level(input_df, date_column="Date"): | |
# Ensure 'Date' is set as the index | |
if date_column not in input_df.index.names: | |
input_df = input_df.set_index(date_column) | |
# Select numeric columns only (excluding 'Date' since it's now the index) | |
numeric_columns_df = input_df.select_dtypes(include="number") | |
# Group by 'Date' (which is the index) and sum the numeric columns | |
aggregated_df = numeric_columns_df.groupby(input_df.index).sum() | |
# Reset index if you want 'Date' back as a column | |
aggregated_df = aggregated_df.reset_index() | |
return aggregated_df | |
def initialize_data( | |
target_file, panel=None, updated_rcs=None, metrics=None | |
): | |
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173, | |
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1, | |
# "digital_spends":1} | |
# # print('State initialized') | |
excel = pd.read_excel(target_file, sheet_name=None) | |
# Extract dataframes for raw data, spend input, and contribution MMM | |
raw_df = excel["RAW DATA MMM"] | |
spend_df = excel["SPEND INPUT"] | |
contri_df = excel["CONTRIBUTION MMM"] | |
# Check if the panel is not None | |
raw_df = panel_level(raw_df, date_column="Date") | |
spend_df = panel_level(spend_df, date_column="Week") | |
contri_df = panel_level(contri_df, date_column="Date") | |
# Revenue_df = excel['Revenue'] | |
## remove sesonalities, indices etc ... | |
exclude_columns = [ | |
"Date", | |
"Region", | |
"Controls_Grammarly_Index_SeasonalAVG", | |
"Controls_Quillbot_Index", | |
"Daily_Positive_Outliers", | |
"External_RemoteClass_Index", | |
"Intervals ON 20190520-20190805 | 20200518-20200803 | 20210517-20210802", | |
"Intervals ON 20190826-20191209 | 20200824-20201207 | 20210823-20211206", | |
"Intervals ON 20201005-20201019", | |
"Promotion_PercentOff", | |
"Promotion_TimeBased", | |
"Seasonality_Indicator_Chirstmas", | |
"Seasonality_Indicator_NewYears_Days", | |
"Seasonality_Indicator_Thanksgiving", | |
"Trend 20200302 / 20200803", | |
] | |
raw_df["Date"] = pd.to_datetime(raw_df["Date"]) | |
contri_df["Date"] = pd.to_datetime(contri_df["Date"]) | |
input_df = raw_df.sort_values(by="Date") | |
output_df = contri_df.sort_values(by="Date") | |
spend_df["Week"] = pd.to_datetime( | |
spend_df["Week"], format="%Y-%m-%d", errors="coerce" | |
) | |
spend_df.sort_values(by="Week", inplace=True) | |
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce') | |
# spend_df = spend_df.sort_values(by='Week') | |
channel_list = [col for col in input_df.columns if col not in exclude_columns] | |
channel_list = list(set(channel_list) - set(["fb_level_achieved_tier_1", "ga_app"])) | |
response_curves = {} | |
mapes = {} | |
rmses = {} | |
upper_limits = {} | |
powers = {} | |
r2 = {} | |
conv_rates = {} | |
output_cols = [] | |
channels = {} | |
sales = None | |
dates = input_df.Date.values | |
actual_output_dic = {} | |
actual_input_dic = {} | |
for inp_col in channel_list: | |
# st.write(inp_col) | |
spends = input_df[inp_col].values | |
x = spends.copy() | |
# upper limit for penalty | |
upper_limits[inp_col] = 2 * x.max() | |
# contribution | |
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0] | |
y = output_df[out_col].values.copy() | |
actual_output_dic[inp_col] = y.copy() | |
actual_input_dic[inp_col] = x.copy() | |
##output cols aggregation | |
output_cols.append(out_col) | |
params = pd.read_excel("response_curves_parameters.xlsx",index_col = "channel") | |
param_dicts = {col: params[col].to_dict() for col in params.columns} | |
response_curves[inp_col] = { | |
"Kd": param_dicts["Kd"][inp_col], | |
"n": param_dicts["n"][inp_col], | |
"x_min": param_dicts["x_min"][inp_col], | |
"x_max": param_dicts["x_max"][inp_col], | |
"y_min": param_dicts["y_min"][inp_col], | |
"y_max": param_dicts["y_max"][inp_col] | |
} | |
updated_rcs_key = f"{metrics}#@{panel}#@{inp_col}" | |
if updated_rcs is not None and updated_rcs_key in list(updated_rcs.keys()): | |
response_curves[inp_col] = updated_rcs[updated_rcs_key] | |
# # print(response_curves) | |
## conversion rates | |
spend_col = [ | |
_col | |
for _col in spend_df.columns | |
if _col.startswith(inp_col.rsplit("_", 1)[0]) | |
][0] | |
# # print(spend_col) | |
# # print('## printing spendssss') | |
# # print(spend_col) | |
conv = ( | |
spend_df.set_index("Week")[spend_col] | |
/ input_df.set_index("Date")[inp_col].clip(lower=1) | |
).reset_index() | |
conv.rename(columns={"index": "Week"}, inplace=True) | |
conv["year"] = conv.Week.dt.year | |
conv_rates[inp_col] = list(conv.drop("Week", axis=1).mean().to_dict().values())[ | |
0 | |
] | |
# # print(conv_rates) | |
### print('Before',conv_rates[inp_col]) | |
# conv_rates[inp_col] = uopx_conv_rates[inp_col] | |
### print('After',(conv_rates[inp_col])) | |
channel = Channel( | |
name=inp_col, | |
dates=dates, | |
spends=spends, | |
sales= y.copy(), | |
# conversion_rate = np.mean(list(conv_rates[inp_col].values())), | |
conversion_rate=conv_rates[inp_col], | |
response_curve_type="hill-eq", | |
response_curve_params={ | |
"Kd": param_dicts["Kd"][inp_col], | |
"n": param_dicts["n"][inp_col], | |
"x_min": param_dicts["x_min"][inp_col], | |
"x_max": param_dicts["x_max"][inp_col], | |
"y_min": param_dicts["y_min"][inp_col], | |
"y_max": param_dicts["y_max"][inp_col] | |
}, | |
bounds=np.array([-10, 10]), | |
channel_bounds_min = 10, | |
channel_bounds_max = 10 | |
) | |
channels[inp_col] = channel | |
if sales is None: | |
sales = channel.actual_sales | |
else: | |
sales += channel.actual_sales | |
# # print(actual_output_dic) | |
other_contributions = ( | |
output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only=True).values | |
) | |
correction = output_df.drop("Date", axis=1).sum(axis=1).values - ( | |
sales + other_contributions | |
) | |
# # print(other_contributions) | |
# # print(correction) | |
scenario = Scenario( | |
name="default", | |
channels=channels, | |
constant=other_contributions, | |
correction=correction, | |
) | |
## setting session variables | |
st.session_state["initialized"] = True | |
st.session_state["actual_df"] = input_df | |
st.session_state["raw_df"] = raw_df | |
st.session_state["contri_df"] = output_df | |
default_scenario_dict = class_to_dict(scenario) | |
st.session_state["default_scenario_dict"] = default_scenario_dict | |
st.session_state["scenario"] = scenario | |
st.session_state["channels_list"] = channel_list | |
st.session_state["optimization_channels"] = { | |
channel_name: False for channel_name in channel_list | |
} | |
st.session_state["rcs"] = response_curves | |
st.session_state["powers"] = powers | |
st.session_state["actual_contribution_df"] = pd.DataFrame(actual_output_dic) | |
st.session_state["actual_input_df"] = pd.DataFrame(actual_input_dic) | |
for channel in channels.values(): | |
st.session_state[channel.name] = numerize( | |
channel.actual_total_spends * channel.conversion_rate, 1 | |
) | |
st.session_state["xlsx_buffer"] = io.BytesIO() | |
if Path("../saved_scenarios.pkl").exists(): | |
with open("../saved_scenarios.pkl", "rb") as f: | |
st.session_state["saved_scenarios"] = pickle.load(f) | |
else: | |
st.session_state["saved_scenarios"] = OrderedDict() | |
# st.session_state["total_spends_change"] = 0 | |
st.session_state["optimization_channels"] = { | |
channel_name: False for channel_name in channel_list | |
} | |
st.session_state["disable_download_button"] = True | |
# if target_file == : | |
# st.session_state["dividing_parameter"] = | |
# else : | |
def create_channel_summary(scenario): | |
# Provided data | |
data = { | |
"Channel": [ | |
"Paid Search", | |
"Ga will cid baixo risco", | |
"Digital tactic others", | |
"Fb la tier 1", | |
"Fb la tier 2", | |
"Paid social others", | |
"Programmatic", | |
"Kwai", | |
"Indicacao", | |
"Infleux", | |
"Influencer", | |
], | |
"Spends": [ | |
"$ 11.3K", | |
"$ 155.2K", | |
"$ 50.7K", | |
"$ 125.4K", | |
"$ 125.2K", | |
"$ 105K", | |
"$ 3.3M", | |
"$ 47.5K", | |
"$ 55.9K", | |
"$ 632.3K", | |
"$ 48.3K", | |
], | |
"Revenue": [ | |
"558.0K", | |
"3.5M", | |
"5.2M", | |
"3.1M", | |
"3.1M", | |
"2.1M", | |
"20.8M", | |
"1.6M", | |
"728.4K", | |
"22.9M", | |
"4.8M", | |
], | |
} | |
# Create DataFrame | |
df = pd.DataFrame(data) | |
# Convert currency strings to numeric values | |
df["Spends"] = ( | |
df["Spends"] | |
.replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True) | |
.map(pd.eval) | |
.astype(int) | |
) | |
df["Revenue"] = ( | |
df["Revenue"] | |
.replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True) | |
.map(pd.eval) | |
.astype(int) | |
) | |
# Calculate ROI | |
df["ROI"] = (df["Revenue"] - df["Spends"]) / df["Spends"] | |
# Format columns | |
format_currency = lambda x: f"${x:,.1f}" | |
format_roi = lambda x: f"{x:.1f}" | |
df["Spends"] = [ | |
"$ 11.3K", | |
"$ 155.2K", | |
"$ 50.7K", | |
"$ 125.4K", | |
"$ 125.2K", | |
"$ 105K", | |
"$ 3.3M", | |
"$ 47.5K", | |
"$ 55.9K", | |
"$ 632.3K", | |
"$ 48.3K", | |
] | |
df["Revenue"] = [ | |
"$ 536.3K", | |
"$ 3.4M", | |
"$ 5M", | |
"$ 3M", | |
"$ 3M", | |
"$ 2M", | |
"$ 20M", | |
"$ 1.5M", | |
"$ 7.1M", | |
"$ 22M", | |
"$ 4.6M", | |
] | |
df["ROI"] = df["ROI"].apply(format_roi) | |
return df | |
def create_contribution_pie(): | |
color_palette = [ | |
"#F3F3F0", | |
"#5E7D7E", | |
"#2FA1FF", | |
"#00EDED", | |
"#00EAE4", | |
"#304550", | |
"#EDEBEB", | |
"#7FBEFD", | |
"#003059", | |
"#A2F3F3", | |
"#E1D6E2", | |
"#B6B6B6", | |
] | |
total_contribution_fig = make_subplots( | |
rows=1, | |
cols=2, | |
subplot_titles=["Spends", "Revenue"], | |
specs=[[{"type": "pie"}, {"type": "pie"}]], | |
) | |
channels_list = [ | |
"Paid Search", | |
"Ga will cid baixo risco", | |
"Digital tactic others", | |
"Fb la tier 1", | |
"Fb la tier 2", | |
"Paid social others", | |
"Programmatic", | |
"Kwai", | |
"Indicacao", | |
"Infleux", | |
"Influencer", | |
"Non Media", | |
] | |
# Assign colors from the limited palette to channels | |
colors_map = { | |
col: color_palette[i % len(color_palette)] | |
for i, col in enumerate(channels_list) | |
} | |
colors_map["Non Media"] = color_palette[ | |
5 | |
] # Assign fixed green color for 'Non Media' | |
# Hardcoded values for Spends and Revenue | |
spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0] | |
revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16] | |
# Add trace for Spends pie chart | |
total_contribution_fig.add_trace( | |
go.Pie( | |
labels=[channel_name for channel_name in channels_list], | |
values=spends_values, | |
marker=dict( | |
colors=[colors_map[channel_name] for channel_name in channels_list] | |
), | |
hole=0.3, | |
), | |
row=1, | |
col=1, | |
) | |
# Add trace for Revenue pie chart | |
total_contribution_fig.add_trace( | |
go.Pie( | |
labels=[channel_name for channel_name in channels_list], | |
values=revenue_values, | |
marker=dict( | |
colors=[colors_map[channel_name] for channel_name in channels_list] | |
), | |
hole=0.3, | |
), | |
row=1, | |
col=2, | |
) | |
total_contribution_fig.update_traces( | |
textposition="inside", texttemplate="%{percent:.1%}" | |
) | |
total_contribution_fig.update_layout( | |
uniformtext_minsize=12, title="Channel contribution", uniformtext_mode="hide" | |
) | |
return total_contribution_fig | |
def create_contribuion_stacked_plot(scenario): | |
weekly_contribution_fig = make_subplots( | |
rows=1, | |
cols=2, | |
subplot_titles=["Spends", "Revenue"], | |
specs=[[{"type": "bar"}, {"type": "bar"}]], | |
) | |
raw_df = st.session_state["raw_df"] | |
df = raw_df.sort_values(by="Date") | |
x = df.Date | |
weekly_spends_data = [] | |
weekly_sales_data = [] | |
for i, channel_name in enumerate(st.session_state["channels_list"]): | |
color = color_palette[i % len(color_palette)] | |
weekly_spends_data.append( | |
go.Bar( | |
x=x, | |
y=scenario.channels[channel_name].actual_spends | |
* scenario.channels[channel_name].conversion_rate, | |
name=channel_name_formating(channel_name), | |
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
legendgroup=channel_name, | |
marker_color=color, | |
) | |
) | |
weekly_sales_data.append( | |
go.Bar( | |
x=x, | |
y=scenario.channels[channel_name].actual_sales, | |
name=channel_name_formating(channel_name), | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
legendgroup=channel_name, | |
showlegend=False, | |
marker_color=color, | |
) | |
) | |
for _d in weekly_spends_data: | |
weekly_contribution_fig.add_trace(_d, row=1, col=1) | |
for _d in weekly_sales_data: | |
weekly_contribution_fig.add_trace(_d, row=1, col=2) | |
weekly_contribution_fig.add_trace( | |
go.Bar( | |
x=x, | |
y=scenario.constant + scenario.correction, | |
name="Non Media", | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
marker_color=color_palette[-1], | |
), | |
row=1, | |
col=2, | |
) | |
weekly_contribution_fig.update_layout( | |
barmode="stack", title="Channel contribution by week", xaxis_title="Date" | |
) | |
weekly_contribution_fig.update_xaxes(showgrid=False) | |
weekly_contribution_fig.update_yaxes(showgrid=False) | |
return weekly_contribution_fig | |
def create_channel_spends_sales_plot(channel): | |
if channel is not None: | |
x = channel.dates | |
_spends = channel.actual_spends * channel.conversion_rate | |
_sales = channel.actual_sales | |
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
channel_sales_spends_fig.add_trace( | |
go.Bar( | |
x=x, | |
y=_sales, | |
marker_color=color_palette[ | |
3 | |
], # You can choose a color from the palette | |
name="Revenue", | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
), | |
secondary_y=False, | |
) | |
channel_sales_spends_fig.add_trace( | |
go.Scatter( | |
x=x, | |
y=_spends, | |
line=dict( | |
color=color_palette[2] | |
), # You can choose another color from the palette | |
name="Spends", | |
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
), | |
secondary_y=True, | |
) | |
channel_sales_spends_fig.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Revenue", | |
yaxis2_title="Spends ($)", | |
title="Channel spends and Revenue week-wise", | |
) | |
channel_sales_spends_fig.update_xaxes(showgrid=False) | |
channel_sales_spends_fig.update_yaxes(showgrid=False) | |
else: | |
raw_df = st.session_state["raw_df"] | |
df = raw_df.sort_values(by="Date") | |
x = df.Date | |
scenario = class_from_dict(st.session_state["default_scenario_dict"]) | |
_sales = 0 #scenario.constant + scenario.correction | |
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
channel_sales_spends_fig.add_trace( | |
go.Bar( | |
x=x, | |
y=_sales, | |
marker_color=color_palette[ | |
0 | |
], # You can choose a color from the palette | |
name="Revenue", | |
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
), | |
secondary_y=False, | |
) | |
channel_sales_spends_fig.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Revenue", | |
yaxis2_title="Spends ($)", | |
title="Channel spends and Revenue week-wise", | |
) | |
channel_sales_spends_fig.update_xaxes(showgrid=False) | |
channel_sales_spends_fig.update_yaxes(showgrid=False) | |
return channel_sales_spends_fig | |
def format_numbers(value, n_decimals=1, include_indicator=True): | |
if include_indicator: | |
return f"{CURRENCY_INDICATOR} {numerize(value,n_decimals)}" | |
else: | |
return f"{numerize(value,n_decimals)}" | |
def format_numbers_f(value, n_decimals=1, include_indicator=False): | |
if include_indicator: | |
return f"{CURRENCY_INDICATOR} {numerize(value,n_decimals)}" | |
else: | |
return f"{numerize(value,n_decimals)}" | |
def decimal_formater(num_string, n_decimals=1): | |
parts = num_string.split(".") | |
if len(parts) == 1: | |
return num_string + "." + "0" * n_decimals | |
else: | |
to_be_padded = n_decimals - len(parts[-1]) | |
if to_be_padded > 0: | |
return num_string + "0" * to_be_padded | |
else: | |
return num_string | |
def channel_name_formating(channel_name): | |
name_mod = channel_name.replace("_", " ") | |
if name_mod.lower().endswith(" imp"): | |
name_mod = name_mod.replace("Imp", "Spend") | |
elif name_mod.lower().endswith(" clicks"): | |
name_mod = name_mod.replace("Clicks", "Spend") | |
# st.write(channel_name) | |
key_dict = my_dict = { | |
"DisplayProspecting" :"Display Prospecting", | |
"CableTV" :"Cable TV", | |
"SocialProspecting": "Social Prospecting", | |
"Connected&OTTTV" :"Connected & OTTTV", | |
"SocialRetargeting" : "Social Retargeting", | |
"DigitalPartners" :"Digital Partners", | |
"Audio" :"Audio", | |
"BroadcastTV": "Broadcast TV", | |
"SearchNon-brand": "Search Non-brand", | |
"Email" :"Email" , | |
"SearchBrand": "Search Brand", | |
"DisplayRetargeting" : "Display Retargeting" , | |
"\xa0Video":"Video" | |
} | |
return key_dict[channel_name] | |
def send_email(email, message): | |
s = smtplib.SMTP("smtp.gmail.com", 587) | |
s.starttls() | |
s.login("geethu4444@gmail.com", "jgydhpfusuremcol") | |
s.sendmail("geethu4444@gmail.com", email, message) | |
s.quit() | |
if __name__ == "__main__": | |
initialize_data() | |