Simulator-UOPX / Model_Result_Overview.py
Pragya Jatav
test1
7202334
raw
history blame
6.66 kB
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
from utilities import load_authenticator
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def process_train_and_test(train, test, features, panel_col, target_col):
X1 = train[features]
ss = MinMaxScaler()
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
X1[panel_col] = train[panel_col]
X1[target_col] = train[target_col]
if test is not None:
X2 = test[features]
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
X2[panel_col] = test[panel_col]
X2[target_col] = test[target_col]
return X1, X2
return X1
def mdf_predict(X_df, mdf, random_eff_df) :
X=X_df.copy()
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
X['pred_fixed_effect'] = mdf.predict(X)
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
X.to_csv('Test/merged_df_contri.csv',index=False)
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
return X
target_col='Prospects'
target='Prospects'
# is_panel=False
# is_panel = st.session_state['is_panel']
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col='Panel'
date_col = 'date'
#st.write(media_data)
is_panel = True
# panel_col='markets'
date_col = 'date'
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state['authentication_status']
if auth_status:
authenticator.logout('Logout', 'main')
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
def panel_fetch(file_selected):
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
if "Panel" in raw_data_mmm_df.columns:
panel = list(set(raw_data_mmm_df["Panel"]))
else:
raw_data_mmm_df = None
panel = None
return panel
def rerun():
st.rerun()
metrics_selected='prospects'
file_selected = (
f"Overview_data_test_panel@#{metrics_selected}.xlsx"
)
panel_list = panel_fetch(file_selected)
if "selected_markets" not in st.session_state:
st.session_state['selected_markets']='DMA1'
st.header('Overview of previous spends')
selected_market= st.selectbox(
"Select Markets",
["Total Market"] + panel_list
)
initialize_data(target_col,selected_market)
scenario = st.session_state['scenario']
raw_df = st.session_state['raw_df']
# st.write(scenario.actual_total_spends)
# st.write(scenario.actual_total_sales)
columns = st.columns((1,1,3))
with columns[0]:
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
###print(f"##################### {scenario.actual_total_sales} ##################")
with columns[1]:
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
actual_summary_df = create_channel_summary(scenario)
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
columns = st.columns((2,1))
#with columns[0]:
with st.expander('Channel wise overview'):
st.markdown(actual_summary_df.style.set_table_styles(
[{
'selector': 'th',
'props': [('background-color', '#FFFFF')]
},
{
'selector' : 'tr:nth-child(even)',
'props' : [('background-color', '#FFFFF')]
}]).to_html(), unsafe_allow_html=True)
st.markdown("<hr>",unsafe_allow_html=True)
##############################
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
################################3
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
#######################################
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
selected_channel = scenario.channels.get(selected_channel_name,None)
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
# elif auth_status == False:
# st.error('Username/Password is incorrect')
# if auth_status != True:
# try:
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# if username_forgot_pw:
# st.success('New password sent securely')
# # Random password to be transferred to user securely
# elif username_forgot_pw == False:
# st.error('Username not found')
# except Exception as e:
# st.error(e)