BlendMMM commited on
Commit
5cc8082
1 Parent(s): 7275079

Delete pages

Browse files
pages/10_Optimized_Result_Analysis.py DELETED
@@ -1,399 +0,0 @@
1
- import streamlit as st
2
- from numerize.numerize import numerize
3
- import pandas as pd
4
- from utilities import (format_numbers,decimal_formater,
5
- load_local_css,set_header,
6
- initialize_data,
7
- load_authenticator)
8
- import pickle
9
- import streamlit_authenticator as stauth
10
- import yaml
11
- from yaml import SafeLoader
12
- from classes import class_from_dict
13
- import plotly.express as px
14
- import numpy as np
15
- import plotly.graph_objects as go
16
- import pandas as pd
17
-
18
-
19
- def summary_plot(data, x, y, title, text_column, color, format_as_percent=False, format_as_decimal=False):
20
- fig = px.bar(data, x=x, y=y, orientation='h',
21
- title=title, text=text_column, color=color)
22
- fig.update_layout(showlegend=False)
23
- data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
24
-
25
- # Update the format of the displayed text based on the chosen format
26
- if format_as_percent:
27
- fig.update_traces(texttemplate='%{text:.0%}', textposition='outside', hovertemplate='%{x:.0%}')
28
- elif format_as_decimal:
29
- fig.update_traces(texttemplate='%{text:.2f}', textposition='outside', hovertemplate='%{x:.2f}')
30
- else:
31
- fig.update_traces(texttemplate='%{text:.2s}', textposition='outside', hovertemplate='%{x:.2s}')
32
-
33
- fig.update_layout(xaxis_title=x, yaxis_title='Channel Name', showlegend=False)
34
- return fig
35
-
36
-
37
- def stacked_summary_plot(data, x, y, title, text_column, color_column, stack_column=None, format_as_percent=False, format_as_decimal=False):
38
- fig = px.bar(data, x=x, y=y, orientation='h',
39
- title=title, text=text_column, color=color_column, facet_col=stack_column)
40
- fig.update_layout(showlegend=False)
41
- data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
42
-
43
- # Update the format of the displayed text based on the chosen format
44
- if format_as_percent:
45
- fig.update_traces(texttemplate='%{text:.0%}', textposition='outside', hovertemplate='%{x:.0%}')
46
- elif format_as_decimal:
47
- fig.update_traces(texttemplate='%{text:.2f}', textposition='outside', hovertemplate='%{x:.2f}')
48
- else:
49
- fig.update_traces(texttemplate='%{text:.2s}', textposition='outside', hovertemplate='%{x:.2s}')
50
-
51
- fig.update_layout(xaxis_title=x, yaxis_title='', showlegend=False)
52
- return fig
53
-
54
-
55
-
56
- def funnel_plot(data, x, y, title, text_column, color_column, format_as_percent=False, format_as_decimal=False):
57
- data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
58
-
59
- # Round the numeric values in the text column to two decimal points
60
- data[text_column] = data[text_column].round(2)
61
-
62
- # Create a color map for categorical data
63
- color_map = {category: f'rgb({i * 30 % 255},{i * 50 % 255},{i * 70 % 255})' for i, category in enumerate(data[color_column].unique())}
64
-
65
- fig = go.Figure(go.Funnel(
66
- y=data[y],
67
- x=data[x],
68
- text=data[text_column],
69
- marker=dict(color=data[color_column].map(color_map)),
70
- textinfo="value",
71
- hoverinfo='y+x+text'
72
- ))
73
-
74
- # Update the format of the displayed text based on the chosen format
75
- if format_as_percent:
76
- fig.update_layout(title=title, funnelmode="percent")
77
- elif format_as_decimal:
78
- fig.update_layout(title=title, funnelmode="overlay")
79
- else:
80
- fig.update_layout(title=title, funnelmode="group")
81
-
82
- return fig
83
-
84
-
85
- st.set_page_config(layout='wide')
86
- load_local_css('styles.css')
87
- set_header()
88
-
89
- # for k, v in st.session_state.items():
90
- # if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
91
- # st.session_state[k] = v
92
-
93
- st.empty()
94
- st.header('Model Result Analysis')
95
- spends_data=pd.read_excel('Overview_data_test.xlsx')
96
-
97
- with open('summary_df.pkl', 'rb') as file:
98
- summary_df_sorted = pickle.load(file)
99
-
100
- selected_scenario= st.selectbox('Select Saved Scenarios',['S1','S2'])
101
-
102
- st.header('Optimized Spends Overview')
103
- ___columns=st.columns(3)
104
- with ___columns[2]:
105
- fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent',color='Channel_name')
106
- st.plotly_chart(fig,use_container_width=True)
107
- with ___columns[0]:
108
- fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend',color='Channel_name')
109
- st.plotly_chart(fig,use_container_width=True)
110
- with ___columns[1]:
111
- fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend',color='Channel_name')
112
- st.plotly_chart(fig,use_container_width=False)
113
-
114
- st.header(' Budget Allocation')
115
- summary_df_sorted['Perc_alloted']=np.round(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum(),2)
116
- columns2=st.columns(2)
117
- with columns2[0]:
118
- fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend',color='Channel_name')
119
- st.plotly_chart(fig,use_container_width=True)
120
- with columns2[1]:
121
- fig=summary_plot(summary_df_sorted, x='Perc_alloted', y='Channel_name', title='% Split', text_column='Perc_alloted',color='Channel_name',format_as_percent=True)
122
- st.plotly_chart(fig,use_container_width=True)
123
-
124
-
125
- if 'raw_data' not in st.session_state:
126
- st.session_state['raw_data']=pd.read_excel('raw_data_nov7_combined1.xlsx')
127
- st.session_state['raw_data']=st.session_state['raw_data'][st.session_state['raw_data']['MediaChannelName'].isin(summary_df_sorted['Channel_name'].unique())]
128
- st.session_state['raw_data']=st.session_state['raw_data'][st.session_state['raw_data']['Date'].isin(spends_data["Date"].unique())]
129
-
130
-
131
-
132
- #st.write(st.session_state['raw_data']['ResponseMetricName'])
133
- # st.write(st.session_state['raw_data'])
134
-
135
-
136
- st.header('Response Forecast Overview')
137
- raw_data=st.session_state['raw_data']
138
- effectiveness_overall=raw_data.groupby('ResponseMetricName').agg({'ResponseMetricValue': 'sum'}).reset_index()
139
- effectiveness_overall['Efficiency']=effectiveness_overall['ResponseMetricValue'].map(lambda x: x/raw_data['Media Spend'].sum() )
140
- # st.write(effectiveness_overall)
141
-
142
- columns6=st.columns(3)
143
-
144
- effectiveness_overall.sort_values(by=['ResponseMetricValue'],ascending=False,inplace=True)
145
- effectiveness_overall=np.round(effectiveness_overall,2)
146
- effectiveness_overall['ResponseMetric'] = effectiveness_overall['ResponseMetricName'].apply(lambda x: 'BAU' if 'BAU' in x else ('Gamified' if 'Gamified' in x else x))
147
- # effectiveness_overall=np.where(effectiveness_overall[effectiveness_overall['ResponseMetricName']=="Adjusted Account Approval BAU"],"Adjusted Account Approval BAU",effectiveness_overall['ResponseMetricName'])
148
-
149
- effectiveness_overall.replace({'ResponseMetricName':{'BAU approved clients - Appsflyer':'Approved clients - Appsflyer',
150
- 'Gamified approved clients - Appsflyer':'Approved clients - Appsflyer'}},inplace=True)
151
-
152
- # st.write(effectiveness_overall.sort_values(by=['ResponseMetricValue'],ascending=False))
153
-
154
-
155
- condition = effectiveness_overall['ResponseMetricName'] == "Adjusted Account Approval BAU"
156
- condition1= effectiveness_overall['ResponseMetricName'] == "Approved clients - Appsflyer"
157
- effectiveness_overall['ResponseMetric'] = np.where(condition, "Adjusted Account Approval BAU", effectiveness_overall['ResponseMetric'])
158
-
159
- effectiveness_overall['ResponseMetricName'] = np.where(condition1, "Approved clients - Appsflyer (BAU, Gamified)", effectiveness_overall['ResponseMetricName'])
160
- # effectiveness_overall=pd.DataFrame({'ResponseMetricName':["App Installs - Appsflyer",'Account Requests - Appsflyer',
161
- # 'Total Adjusted Account Approval','Adjusted Account Approval BAU',
162
- # 'Approved clients - Appsflyer','Approved clients - Appsflyer'],
163
- # 'ResponseMetricValue':[683067,367020,112315,79768,36661,16834],
164
- # 'Efficiency':[1.24,0.67,0.2,0.14,0.07,0.03],
165
- custom_colors = {
166
- 'App Installs - Appsflyer': 'rgb(255, 135, 0)', # Steel Blue (Blue)
167
- 'Account Requests - Appsflyer': 'rgb(125, 239, 161)', # Cornflower Blue (Blue)
168
- 'Adjusted Account Approval': 'rgb(129, 200, 255)', # Dodger Blue (Blue)
169
- 'Adjusted Account Approval BAU': 'rgb(255, 207, 98)', # Light Sky Blue (Blue)
170
- 'Approved clients - Appsflyer': 'rgb(0, 97, 198)', # Light Blue (Blue)
171
- "BAU": 'rgb(41, 176, 157)', # Steel Blue (Blue)
172
- "Gamified": 'rgb(213, 218, 229)' # Silver (Gray)
173
- # Add more categories and their respective shades of blue as needed
174
- }
175
-
176
-
177
-
178
-
179
-
180
-
181
- with columns6[0]:
182
- revenue=(effectiveness_overall[effectiveness_overall['ResponseMetricName']=='Total Approved Accounts - Revenue']['ResponseMetricValue']).iloc[0]
183
- revenue=round(revenue / 1_000_000, 2)
184
-
185
- # st.metric('Total Revenue', f"${revenue} M")
186
- # with columns6[1]:
187
- # BAU=(effectiveness_overall[effectiveness_overall['ResponseMetricName']=='BAU approved clients - Revenue']['ResponseMetricValue']).iloc[0]
188
- # BAU=round(BAU / 1_000_000, 2)
189
- # st.metric('BAU approved clients - Revenue', f"${BAU} M")
190
- # with columns6[2]:
191
- # Gam=(effectiveness_overall[effectiveness_overall['ResponseMetricName']=='Gamified approved clients - Revenue']['ResponseMetricValue']).iloc[0]
192
- # Gam=round(Gam / 1_000_000, 2)
193
- # st.metric('Gamified approved clients - Revenue', f"${Gam} M")
194
-
195
- # st.write(effectiveness_overall)
196
- data = {'Revenue': ['BAU approved clients - Revenue', 'Gamified approved clients- Revenue'],
197
- 'ResponseMetricValue': [70200000, 1770000],
198
- 'Efficiency':[127.54,3.21]}
199
- df = pd.DataFrame(data)
200
-
201
-
202
- columns9=st.columns([0.60,0.40])
203
- with columns9[0]:
204
- figd = px.pie(df,
205
- names='Revenue',
206
- values='ResponseMetricValue',
207
- hole=0.3, # set the size of the hole in the donut
208
- title='Effectiveness')
209
- figd.update_layout(
210
- margin=dict(l=0, r=0, b=0, t=0),width=100, height=180,legend=dict(
211
- orientation='v', # set orientation to horizontal
212
- x=0, # set x to 0 to move to the left
213
- y=0.8 # adjust y as needed
214
- )
215
- )
216
-
217
- st.plotly_chart(figd, use_container_width=True)
218
-
219
- with columns9[1]:
220
- figd1 = px.pie(df,
221
- names='Revenue',
222
- values='Efficiency',
223
- hole=0.3, # set the size of the hole in the donut
224
- title='Efficiency')
225
- figd1.update_layout(
226
- margin=dict(l=0, r=0, b=0, t=0),width=100,height=180,showlegend=False
227
- )
228
- st.plotly_chart(figd1, use_container_width=True)
229
-
230
- effectiveness_overall['Response Metric Name']=effectiveness_overall['ResponseMetricName']
231
-
232
-
233
-
234
- columns4= st.columns([0.55,0.45])
235
- with columns4[0]:
236
- fig=px.funnel(effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue',
237
- 'BAU approved clients - Revenue',
238
- 'Gamified approved clients - Revenue',
239
- "Total Approved Accounts - Appsflyer"]))],
240
- x='ResponseMetricValue', y='Response Metric Name',color='ResponseMetric',
241
- color_discrete_map=custom_colors,title='Effectiveness',
242
- labels=None)
243
- custom_y_labels=['App Installs - Appsflyer','Account Requests - Appsflyer','Adjusted Account Approval','Adjusted Account Approval BAU',
244
- "Approved clients - Appsflyer (BAU, Gamified)"
245
- ]
246
- fig.update_layout(showlegend=False,
247
- yaxis=dict(
248
- tickmode='array',
249
- ticktext=custom_y_labels,
250
- )
251
- )
252
- fig.update_traces(textinfo='value', textposition='inside', texttemplate='%{x:.2s} ', hoverinfo='y+x+percent initial')
253
-
254
- last_trace_index = len(fig.data) - 1
255
- fig.update_traces(marker=dict(line=dict(color='black', width=2)), selector=dict(marker=dict(color='blue')))
256
-
257
- st.plotly_chart(fig,use_container_width=True)
258
-
259
-
260
-
261
-
262
-
263
- with columns4[1]:
264
-
265
- # Your existing code for creating the bar chart
266
- fig1 = px.bar((effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue',
267
- 'BAU approved clients - Revenue',
268
- 'Gamified approved clients - Revenue',
269
- "Total Approved Accounts - Appsflyer"]))]).sort_values(by='ResponseMetricValue'),
270
- x='Efficiency', y='Response Metric Name',
271
- color_discrete_map=custom_colors, color='ResponseMetric',
272
- labels=None,text_auto=True,title='Efficiency'
273
- )
274
-
275
- # Update layout and traces
276
- fig1.update_traces(customdata=effectiveness_overall['Efficiency'],
277
- textposition='auto')
278
- fig1.update_layout(showlegend=False)
279
- fig1.update_yaxes(title='',showticklabels=False)
280
- fig1.update_xaxes(title='',showticklabels=False)
281
- fig1.update_xaxes(tickfont=dict(size=20))
282
- fig1.update_yaxes(tickfont=dict(size=20))
283
- st.plotly_chart(fig1, use_container_width=True)
284
-
285
-
286
- effectiveness_overall_revenue=pd.DataFrame({'ResponseMetricName':['Approved Clients','Approved Clients'],
287
- 'ResponseMetricValue':[70201070,1768900],
288
- 'Efficiency':[127.54,3.21],
289
- 'ResponseMetric':['BAU','Gamified']
290
- })
291
- # from plotly.subplots import make_subplots
292
- # fig = make_subplots(rows=1, cols=2,
293
- # subplot_titles=["Effectiveness", "Efficiency"])
294
-
295
- # # Add first plot as subplot
296
- # fig.add_trace(go.Funnel(
297
- # x = fig.data[0].x,
298
- # y = fig.data[0].y,
299
- # textinfo = 'value+percent initial',
300
- # hoverinfo = 'x+y+percent initial'
301
- # ), row=1, col=1)
302
-
303
- # # Update layout for first subplot
304
- # fig.update_xaxes(title_text="Response Metric Value", row=1, col=1)
305
- # fig.update_yaxes(ticktext = custom_y_labels, row=1, col=1)
306
-
307
- # # Add second plot as subplot
308
- # fig.add_trace(go.Bar(
309
- # x = fig1.data[0].x,
310
- # y = fig1.data[0].y,
311
- # customdata = fig1.data[0].customdata,
312
- # textposition = 'auto'
313
- # ), row=1, col=2)
314
-
315
- # # Update layout for second subplot
316
- # fig.update_xaxes(title_text="Efficiency", showticklabels=False, row=1, col=2)
317
- # fig.update_yaxes(title='', showticklabels=False, row=1, col=2)
318
-
319
- # fig.update_layout(height=600, width=800, title_text="Key Metrics")
320
- # st.plotly_chart(fig)
321
-
322
-
323
- st.header('Return Forecast by Media Channel')
324
- with st.expander("Return Forecast by Media Channel"):
325
- metric_data=[val for val in list(st.session_state['raw_data']['ResponseMetricName'].unique()) if val!=np.NaN]
326
- # st.write(metric_data)
327
- metric=st.selectbox('Select Metric',metric_data,index=1)
328
-
329
- selected_metric=st.session_state['raw_data'][st.session_state['raw_data']['ResponseMetricName']==metric]
330
- # st.dataframe(selected_metric.head(2))
331
- selected_metric=st.session_state['raw_data'][st.session_state['raw_data']['ResponseMetricName']==metric]
332
- effectiveness=selected_metric.groupby(by=['MediaChannelName'])['ResponseMetricValue'].sum()
333
- effectiveness_df=pd.DataFrame({'Channel':effectiveness.index,"ResponseMetricValue":effectiveness.values})
334
-
335
- summary_df_sorted=summary_df_sorted.merge(effectiveness_df,left_on="Channel_name",right_on='Channel')
336
-
337
- # st.dataframe(summary_df_sorted.head(2))
338
- summary_df_sorted['Efficiency']=summary_df_sorted['ResponseMetricValue']/summary_df_sorted['Optimized_spend']
339
- # # # st.dataframe(summary_df_sorted.head(2))
340
- # st.dataframe(summary_df_sorted.head(2))
341
-
342
- columns= st.columns(3)
343
- with columns[0]:
344
- fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='', text_column='Optimized_spend',color='Channel_name')
345
- st.plotly_chart(fig,use_container_width=True)
346
- with columns[1]:
347
-
348
- # effectiveness=(selected_metric.groupby(by=['MediaChannelName'])['ResponseMetricValue'].sum()).values
349
- # effectiveness_df=pd.DataFrame({'Channel':st.session_state['raw_data']['MediaChannelName'].unique(),"ResponseMetricValue":effectiveness})
350
- # # effectiveness.reset_index(inplace=True)
351
- # # st.dataframe(effectiveness.head())
352
- fig=summary_plot(summary_df_sorted, x='ResponseMetricValue', y='Channel_name', title='Effectiveness', text_column='ResponseMetricValue',color='Channel_name')
353
- st.plotly_chart(fig,use_container_width=True)
354
-
355
- with columns[2]:
356
- fig=summary_plot(summary_df_sorted, x='Efficiency', y='Channel_name', title='Efficiency', text_column='Efficiency',color='Channel_name',format_as_decimal=True)
357
- st.plotly_chart(fig,use_container_width=True)
358
-
359
- import plotly.express as px
360
- import plotly.graph_objects as go
361
- from plotly.subplots import make_subplots
362
-
363
- # Create figure with subplots
364
- # fig = make_subplots(rows=1, cols=2)
365
-
366
- # # Add funnel plot to subplot 1
367
- # fig.add_trace(
368
- # go.Funnel(
369
- # x=effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue', 'BAU approved clients - Revenue', 'Gamified approved clients - Revenue', "Total Approved Accounts - Appsflyer"]))]['ResponseMetricValue'],
370
- # y=effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue', 'BAU approved clients - Revenue', 'Gamified approved clients - Revenue', "Total Approved Accounts - Appsflyer"]))]['ResponseMetricName'],
371
- # textposition="inside",
372
- # texttemplate="%{x:.2s}",
373
- # customdata=effectiveness_overall['Efficiency'],
374
- # hovertemplate="%{customdata:.2f}<extra></extra>"
375
- # ),
376
- # row=1, col=1
377
- # )
378
-
379
- # # Add bar plot to subplot 2
380
- # fig.add_trace(
381
- # go.Bar(
382
- # x=effectiveness_overall.sort_values(by='ResponseMetricValue')['Efficiency'],
383
- # y=effectiveness_overall.sort_values(by='ResponseMetricValue')['ResponseMetricName'],
384
- # marker_color=effectiveness_overall['ResponseMetric'],
385
- # customdata=effectiveness_overall['Efficiency'],
386
- # hovertemplate="%{customdata:.2f}<extra></extra>",
387
- # textposition="outside"
388
- # ),
389
- # row=1, col=2
390
- # )
391
-
392
- # # Update layout
393
- # fig.update_layout(title_text="Effectiveness")
394
- # fig.update_yaxes(title_text="", row=1, col=1)
395
- # fig.update_yaxes(title_text="", showticklabels=False, row=1, col=2)
396
- # fig.update_xaxes(title_text="Efficiency", showticklabels=False, row=1, col=2)
397
-
398
- # # Show figure
399
- # st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/1_Data_Validation.py DELETED
@@ -1,241 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import plotly.express as px
4
- import plotly.graph_objects as go
5
- from Eda_functions import *
6
- import numpy as np
7
- import re
8
- import pickle
9
- from ydata_profiling import ProfileReport
10
- from streamlit_pandas_profiling import st_profile_report
11
- import streamlit as st
12
- import streamlit.components.v1 as components
13
- import sweetviz as sv
14
- from utilities import set_header,initialize_data,load_local_css
15
- from st_aggrid import GridOptionsBuilder,GridUpdateMode
16
- from st_aggrid import GridOptionsBuilder
17
- from st_aggrid import AgGrid
18
- import base64
19
-
20
- st.set_page_config(
21
- page_title="Data Validation",
22
- page_icon=":shark:",
23
- layout="wide",
24
- initial_sidebar_state='collapsed'
25
- )
26
- load_local_css('styles.css')
27
- set_header()
28
-
29
-
30
-
31
- #preprocessing
32
- # with open('Categorised_data.pkl', 'rb') as file:
33
- # Categorised_data = pickle.load(file)
34
- # with open("edited_dataframe.pkl", 'rb') as file:
35
-
36
-
37
- # df = pickle.load(file)
38
- # date=df.index
39
- # df.reset_index(inplace=True)
40
- # df['Date'] = pd.to_datetime(date)
41
-
42
-
43
- #prospects=pd.read_excel('EDA_Data.xlsx',sheet_name='Prospects')
44
- #spends=pd.read_excel('EDA_Data.xlsx',sheet_name='SPEND INPUT')
45
- #spends.columns=['Week','Streaming (Spends)','TV (Spends)','Search (Spends)','Digital (Spends)']
46
- #df=pd.concat([df,spends],axis=1)
47
-
48
- #df['Date'] =pd.to_datetime(df['Date']).dt.strftime('%m/%d/%Y')
49
- #df['Prospects']=prospects['Prospects']
50
- #df.drop(['Week'],axis=1,inplace=True)
51
-
52
-
53
- st.title('Data Validation and Insights')
54
-
55
- with open("Pickle_files/main_df",'rb') as f:
56
- st.session_state['cleaned_data']= pickle.load(f)
57
- with open("Pickle_files/category_dict",'rb') as c:
58
- st.session_state['category_dict']=pickle.load(c)
59
-
60
- # st.write(st.session_state['cleaned_data'])
61
-
62
- target_variables=[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Response_Metric']
63
-
64
-
65
- target_column = st.selectbox('Select the Target Feature/Dependent Variable (will be used in all charts as reference)',list(*target_variables))
66
- st.session_state['target_column']=target_column
67
-
68
-
69
- fig=line_plot_target(st.session_state['cleaned_data'], target=target_column, title=f'{target_column} Over Time')
70
- st.plotly_chart(fig, use_container_width=True)
71
-
72
-
73
- media_channel=list(*[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Media'])
74
- # st.write(media_channel)
75
-
76
- Non_media_channel=[col for col in st.session_state['cleaned_data'].columns if col not in media_channel]
77
-
78
-
79
- st.markdown('### Annual Data Summary')
80
- st.dataframe(summary(st.session_state['cleaned_data'], media_channel+[target_column], spends=None,Target=True), use_container_width=True)
81
-
82
- if st.checkbox('Show raw data'):
83
- st.write(pd.concat([pd.to_datetime(st.session_state['cleaned_data']['Date']).dt.strftime('%m/%d/%Y'),st.session_state['cleaned_data'].select_dtypes(np.number).applymap(format_numbers)],axis=1))
84
- col1 = st.columns(1)
85
-
86
- if "selected_feature" not in st.session_state:
87
- st.session_state['selected_feature']=None
88
-
89
- st.header('1. Media Channels')
90
-
91
- if 'Validation' not in st.session_state:
92
- st.session_state['Validation']=[]
93
-
94
- eda_columns=st.columns(2)
95
- with eda_columns[0]:
96
- if st.button('Generate Profile Report'):
97
- pr = st.session_state['cleaned_data'].profile_report()
98
-
99
- pr.to_file("Profile_Report.html")
100
-
101
- with open("Profile_Report.html", "rb") as f:
102
- profile_report_html = f.read()
103
- b64 = base64.b64encode(profile_report_html).decode()
104
- href = f'<a href="data:text/html;base64,{b64}" download="Profile_Report.html">Download Profile Report</a>'
105
- st.markdown(href, unsafe_allow_html=True)
106
-
107
- with eda_columns[1]:
108
- if st.button('Generate Sweetviz Report'):
109
-
110
- def generate_report_with_target(df, target_feature):
111
- report = sv.analyze([df, "Dataset"], target_feat=target_feature)
112
- return report
113
-
114
- report = generate_report_with_target(st.session_state['cleaned_data'], target_feature=target_column)
115
- report.show_html()
116
-
117
-
118
- selected_media = st.selectbox('Select media', np.unique([Categorised_data[col]['VB'] for col in media_channel]))
119
- # selected_feature=st.multiselect('Select Metric', df.columns[df.columns.str.contains(selected_media,case=False)])
120
- st.session_state["selected_feature"]=st.selectbox('Select Metric',[col for col in media_channel if Categorised_data[col]['VB'] in selected_media ] )
121
- spends_features=[col for col in df.columns if 'spends' in col.lower() or 'cost' in col.lower()]
122
- spends_feature=[col for col in spends_features if col.split('_')[0] in st.session_state["selected_feature"].split('_')[0]]
123
- #st.write(spends_features)
124
- #st.write(spends_feature)
125
- #st.write(selected_feature)
126
-
127
-
128
- val_variables=[col for col in media_channel if col!='Date']
129
- if len(spends_feature)==0:
130
- st.warning('No spends varaible available for the selected metric in data')
131
-
132
- else:
133
- st.write(f'Selected spends variable {spends_feature[0]} if wrong please name the varaibles properly')
134
- # Create the dual-axis line plot
135
- fig_row1 = line_plot(df, x_col='Date', y1_cols=[st.session_state["selected_feature"]], y2_cols=[target_column], title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time')
136
- st.plotly_chart(fig_row1, use_container_width=True)
137
- st.markdown('### Annual Data Summary')
138
- st.dataframe(summary(df,[st.session_state["selected_feature"]],spends=spends_feature[0]),use_container_width=True)
139
- if st.button('Validate'):
140
- st.session_state['Validation'].append(st.session_state["selected_feature"])
141
-
142
- if st.checkbox('Validate all'):
143
- st.session_state['Validation'].extend(val_variables)
144
- st.success('All media variables are validated ✅')
145
- if len(set(st.session_state['Validation']).intersection(val_variables))!=len(val_variables):
146
- #st.write(st.session_state['Validation'])
147
- validation_data=pd.DataFrame({'Variables':val_variables,
148
- 'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables],
149
- 'Bucket':[Categorised_data[col]['VB'] for col in val_variables]})
150
- gd=GridOptionsBuilder.from_dataframe(validation_data)
151
- gd.configure_pagination(enabled=True)
152
- gd.configure_selection(use_checkbox=True,selection_mode='multiple')
153
- #gd.configure_selection_toggle_all(None, show_toggle_all=True)
154
- #gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns)
155
- gridoptions=gd.build()
156
- #st.text(st.session_state['Validation'])
157
- table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True)
158
- #st.table(table)
159
- selected_rows = table["selected_rows"]
160
- st.session_state['Validation'].extend([col['Variables'] for col in selected_rows])
161
- not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]]
162
- if not_validated_variables:
163
- not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
164
- st.warning(not_validated_message)
165
-
166
-
167
-
168
- st.header('2. Non Media Variables')
169
- selected_columns_row = [col for col in df.columns if ("imp" not in col.lower()) and ('cli' not in col.lower() ) and ('spend' not in col.lower()) and col!='Date']
170
- selected_columns_row4 = st.selectbox('Select Channel',selected_columns_row )
171
- if not selected_columns_row4:
172
- st.warning('Please select at least one.')
173
- else:
174
- # Create the dual-axis line plot
175
- fig_row4 = line_plot(df, x_col='Date', y1_cols=[selected_columns_row4], y2_cols=[target_column], title=f'Analysis of {selected_columns_row4} and {target_column} Over Time')
176
- st.plotly_chart(fig_row4, use_container_width=True)
177
- selected_non_media=selected_columns_row4
178
- sum_df = df[['Date', selected_non_media,target_column]]
179
- sum_df['Year']=pd.to_datetime(df['Date']).dt.year
180
- #st.dataframe(df)
181
- #st.dataframe(sum_df.head(2))
182
- sum_df=sum_df.groupby('Year').agg('sum')
183
- sum_df.loc['Grand Total']=sum_df.sum()
184
- sum_df=sum_df.applymap(format_numbers)
185
- sum_df.fillna('-',inplace=True)
186
- sum_df=sum_df.replace({"0.0":'-','nan':'-'})
187
- st.markdown('### Annual Data Summary')
188
- st.dataframe(sum_df,use_container_width=True)
189
-
190
- # if st.checkbox('Validate',key='2'):
191
- # st.session_state['Validation'].append(selected_columns_row4)
192
- # val_variables=[col for col in media_channel if col!='Date']
193
- # if st.checkbox('Validate all'):
194
- # st.session_state['Validation'].extend(val_variables)
195
- # validation_data=pd.DataFrame({'Variables':val_variables,
196
- # 'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables],
197
- # 'Bucket':[Categorised_data[col]['VB'] for col in val_variables]})
198
- # gd=GridOptionsBuilder.from_dataframe(validation_data)
199
- # gd.configure_pagination(enabled=True)
200
- # gd.configure_selection(use_checkbox=True,selection_mode='multiple')
201
- # #gd.configure_selection_toggle_all(None, show_toggle_all=True)
202
- # #gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns)
203
- # gridoptions=gd.build()
204
- # #st.text(st.session_state['Validation'])
205
- # table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True)
206
- # #st.table(table)
207
- # selected_rows = table["selected_rows"]
208
- # st.session_state['Validation'].extend([col['Variables'] for col in selected_rows])
209
- # not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]]
210
- # if not_validated_variables:
211
- # not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
212
- # st.warning(not_validated_message)
213
-
214
- options = list(df.select_dtypes(np.number).columns)
215
- st.markdown(' ')
216
- st.markdown(' ')
217
- st.markdown('# Exploratory Data Analysis')
218
- st.markdown(' ')
219
-
220
- selected_options = []
221
- num_columns = 4
222
- num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows
223
-
224
- # Create a grid of checkboxes
225
- st.header('Select Features for Correlation Plot')
226
- tick=False
227
- if st.checkbox('Select all'):
228
- tick=True
229
- selected_options = []
230
- for row in range(num_rows):
231
- cols = st.columns(num_columns)
232
- for col in cols:
233
- if options:
234
- option = options.pop(0)
235
- selected = col.checkbox(option,value=tick)
236
- if selected:
237
- selected_options.append(option)
238
- # Display selected options
239
- #st.write('You selected:', selected_options)
240
- st.pyplot(correlation_plot(df,selected_options,target_column))
241
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/2_Transformations_with_panel.py DELETED
@@ -1,612 +0,0 @@
1
- '''
2
- MMO Build Sprint 3
3
- date :
4
- additions : adding more variables to session state for saved model : random effect, predicted train & test
5
- '''
6
-
7
- import streamlit as st
8
- import pandas as pd
9
- import plotly.express as px
10
- import plotly.graph_objects as go
11
- from Eda_functions import format_numbers
12
- import numpy as np
13
- import pickle
14
- from st_aggrid import AgGrid
15
- from st_aggrid import GridOptionsBuilder,GridUpdateMode
16
- from utilities import set_header,load_local_css
17
- from st_aggrid import GridOptionsBuilder
18
- import time
19
- import itertools
20
- import statsmodels.api as sm
21
- import numpy as npc
22
- import re
23
- import itertools
24
- from sklearn.metrics import mean_absolute_error, r2_score,mean_absolute_percentage_error
25
- from sklearn.preprocessing import MinMaxScaler
26
- import os
27
- import matplotlib.pyplot as plt
28
- from statsmodels.stats.outliers_influence import variance_inflation_factor
29
- st.set_option('deprecation.showPyplotGlobalUse', False)
30
- import statsmodels.api as sm
31
- import statsmodels.formula.api as smf
32
-
33
- from datetime import datetime
34
- import seaborn as sns
35
- from Data_prep_functions import *
36
-
37
-
38
- def get_random_effects(media_data, panel_col, mdf):
39
- random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
40
-
41
- for i, market in enumerate(media_data[panel_col].unique()):
42
- print(i, end='\r')
43
- intercept = mdf.random_effects[market].values[0]
44
- random_eff_df.loc[i, 'random_effect'] = intercept
45
- random_eff_df.loc[i, panel_col] = market
46
-
47
- return random_eff_df
48
-
49
-
50
- def mdf_predict(X_df, mdf, random_eff_df) :
51
- X=X_df.copy()
52
- X['fixed_effect'] = mdf.predict(X)
53
- X=pd.merge(X, random_eff_df, on=panel_col, how='left')
54
- X['pred'] = X['fixed_effect'] + X['random_effect']
55
- # X.to_csv('Test/megred_df.csv',index=False)
56
- X.drop(columns=['fixed_effect', 'random_effect'], inplace=True)
57
- return X['pred']
58
-
59
- st.set_page_config(
60
- page_title="Model Build",
61
- page_icon=":shark:",
62
- layout="wide",
63
- initial_sidebar_state='collapsed'
64
- )
65
-
66
- load_local_css('styles.css')
67
- set_header()
68
-
69
-
70
- st.title('1. Build Your Model')
71
-
72
- # set the panel column
73
- date_col = 'date'
74
-
75
-
76
- media_data=pd.read_csv(r'upf_data_converted.csv')
77
- # with open("Pickle_files/main_df",'rb') as f:
78
- # media_data= pickle.load(f)
79
-
80
-
81
- media_data.columns=[i.lower().strip().replace(' ','_').replace('-','').replace(':','').replace("__", "_") for i in media_data.columns]
82
- #st.write(media_data.columns)
83
- #media_data.drop(['indicacao_impressions','infleux_impressions','influencer_impressions'],axis=1,inplace=True)
84
- target_col = 'total_approved_accounts_revenue'
85
- # st.write(media_data.columns)
86
- media_data.sort_values(date_col, inplace=True)
87
- media_data.reset_index(drop=True,inplace=True)
88
-
89
- date=media_data[date_col]
90
- st.session_state['date']=date
91
- revenue=media_data[target_col]
92
- media_data.drop([target_col],axis=1,inplace=True)
93
- media_data.drop([date_col],axis=1,inplace=True)
94
- media_data.reset_index(drop=True,inplace=True)
95
-
96
-
97
- if st.toggle('Apply Transformations on DMA/Panel Level'):
98
- dma=st.selectbox('Select the Level of data ',[ col for col in media_data.columns if col.lower() in ['dma','panel', 'markets']])
99
- panel_col= dma
100
-
101
- else:
102
- #""" code to aggregate data on date """
103
-
104
-
105
- dma=None
106
-
107
- # dma_dict={ dm:media_data[media_data[dma]==dm] for dm in media_data[dma].unique()}
108
- # st.write(dma_dict)
109
-
110
- st.markdown('## Select the Range of Transformations')
111
- columns = st.columns(2)
112
- old_shape=media_data.shape
113
-
114
-
115
- if "old_shape" not in st.session_state:
116
- st.session_state['old_shape']=old_shape
117
-
118
-
119
- with columns[0]:
120
- slider_value_adstock = st.slider('Select Adstock Range (only applied to media)', 0.0, 1.0, (0.2, 0.4), step=0.1, format="%.2f")
121
- with columns[1]:
122
- slider_value_lag = st.slider('Select Lag Range (applied to media, seasonal, macroeconomic variables)', 1, 7, (1, 3), step=1)
123
-
124
- # with columns[2]:
125
- # slider_value_power=st.slider('Select Power range (only applied to media )',0,4,(1,2),step=1)
126
-
127
- # with columns[1]:
128
- # st.number_input('Select the range of half saturation point ',min_value=1,max_value=5)
129
- # st.number_input('Select the range of ')
130
-
131
- # Section 1 - Transformations Functions
132
- def lag(data,features,lags,dma=None):
133
- if dma:
134
-
135
- transformed_data=pd.concat([data.groupby([dma])[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
136
- transformed_data=transformed_data.fillna(method='bfill')
137
- return pd.concat([transformed_data,data],axis=1)
138
-
139
- else:
140
-
141
- #''' data should be aggregated on date'''
142
-
143
- transformed_data=pd.concat([data[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
144
- transformed_data=transformed_data.fillna(method='bfill')
145
-
146
- return pd.concat([transformed_data,data],axis=1)
147
-
148
- #adstock
149
- def adstock(df, alphas, cutoff, features,dma=None):
150
- # st.write(features)
151
-
152
- if dma:
153
- transformed_data=pd.DataFrame()
154
- for d in df[dma].unique():
155
- dma_sub_df = df[df[dma] == d]
156
- n = len(dma_sub_df)
157
-
158
-
159
- weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])
160
- X = dma_sub_df[features].to_numpy()
161
-
162
- res = pd.DataFrame(np.hstack(weights @ X),
163
- columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
164
-
165
- transformed_data=pd.concat([transformed_data,res],axis=0)
166
- transformed_data.reset_index(drop=True,inplace=True)
167
- return pd.concat([transformed_data,df],axis=1)
168
-
169
- else:
170
-
171
- n = len(df)
172
-
173
-
174
- weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])
175
-
176
- X = df[features].to_numpy()
177
- res = pd.DataFrame(np.hstack(weights @ X),
178
- columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
179
- return pd.concat([res,df],axis=1)
180
-
181
-
182
-
183
-
184
- # Section 2 - Begin Transformations
185
-
186
- if 'media_data' not in st.session_state:
187
-
188
- st.session_state['media_data']=pd.DataFrame()
189
-
190
- # Sprint3 additions
191
- if 'random_effects' not in st.session_state:
192
- st.session_state['random_effects']=pd.DataFrame()
193
- if 'pred_train' not in st.session_state:
194
- st.session_state['pred_train'] = []
195
- if 'pred_test' not in st.session_state:
196
- st.session_state['pred_test'] = []
197
- # end of Sprint3 additions
198
-
199
- # variables_to_be_transformed=[col for col in media_data.columns if col.lower() not in ['dma','panel'] ] # change for buckets
200
- variables_to_be_transformed=[col for col in media_data.columns if '_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
201
- # st.write(variables_to_be_transformed)
202
- # st.write(media_data[variables_to_be_transformed].dtypes)
203
-
204
- with columns[0]:
205
- if st.button('Apply Transformations'):
206
- with st.spinner('Applying Transformations'):
207
- transformed_data_lag=lag(media_data,features=variables_to_be_transformed,lags=np.arange(slider_value_lag[0],slider_value_lag[1]+1,1),dma=dma)
208
-
209
- # variables_to_be_transformed=[col for col in list(transformed_data_lag.columns) if col not in ['Date','DMA','Panel']] #change for buckets
210
- variables_to_be_transformed = [col for col in media_data.columns if
211
- '_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
212
-
213
- transformed_data_adstock=adstock(df=transformed_data_lag, alphas=np.arange(slider_value_adstock[0],slider_value_adstock[1],0.1), cutoff=8, features=variables_to_be_transformed,dma=dma)
214
-
215
- # st.success('Done')
216
- st.success("Transformations complete!")
217
-
218
- st.write(f'old shape {old_shape}, new shape {transformed_data_adstock.shape}')
219
- # st.write(media_data.head(10))
220
- # st.write(transformed_data_adstock.head(10))
221
-
222
- transformed_data_adstock.columns = [c.replace(".","_") for c in transformed_data_adstock.columns] # srishti
223
- # st.write(transformed_data_adstock.columns)
224
- st.session_state['media_data']=transformed_data_adstock # srishti
225
-
226
- # with st.spinner('Applying Transformations'):
227
- # time.sleep(2)
228
- # st.success("Transformations complete!")
229
-
230
- # if st.session_state['media_data'].shape[1]>old_shape[1]:
231
- # with columns[0]:
232
- # st.write(f'Total no.of variables before transformation: {old_shape[1]}, Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
233
- #st.write(f'Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
234
-
235
- # Section 3 - Create combinations
236
-
237
- # bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','FB: Level Achieved - Tier 1 Impressions',
238
- # ' FB: Level Achieved - Tier 2 Impressions','paid_social_others',
239
- # ' GA App: Will And Cid Pequena Baixo Risco Clicks',
240
- # 'digital_tactic_others',"programmatic"
241
- # ]
242
-
243
- # srishti - bucket names changed
244
- bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','fb_level_achieved_tier_2',
245
- 'fb_level_achieved_tier_1','paid_social_others',
246
- 'ga_app',
247
- 'digital_tactic_others',"programmatic"
248
- ]
249
-
250
- with columns[1]:
251
- if st.button('Create Combinations of Variables'):
252
-
253
- top_3_correlated_features=[]
254
- # for col in st.session_state['media_data'].columns[:19]:
255
- original_cols = [c for c in st.session_state['media_data'].columns if "_clicks" in c.lower() or "_impressions" in c.lower()]
256
- original_cols = [c for c in original_cols if "_lag" not in c.lower() and "_adstock" not in c.lower()]
257
- # st.write(original_cols)
258
-
259
- # for col in st.session_state['media_data'].columns[:19]:
260
- for col in original_cols: # srishti - new
261
- corr_df=pd.concat([st.session_state['media_data'].filter(regex=col),
262
- revenue],axis=1).corr()[target_col].iloc[:-1]
263
- top_3_correlated_features.append(list(corr_df.sort_values(ascending=False).head(2).index))
264
- # st.write(col, top_3_correlated_features)
265
- flattened_list = [item for sublist in top_3_correlated_features for item in sublist]
266
- # all_features_set={var:[col for col in flattened_list if var in col] for var in bucket}
267
- all_features_set={var:[col for col in flattened_list if var in col] for var in bucket if len([col for col in flattened_list if var in col])>0} # srishti
268
-
269
- channels_all=[values for values in all_features_set.values()]
270
- # st.write(channels_all)
271
- st.session_state['combinations'] = list(itertools.product(*channels_all))
272
- # if 'combinations' not in st.session_state:
273
- # st.session_state['combinations']=combinations_all
274
-
275
- st.session_state['final_selection']=st.session_state['combinations']
276
- st.success('Done')
277
- # st.write(f"{len(st.session_state['combinations'])} combinations created")
278
-
279
-
280
- revenue.reset_index(drop=True,inplace=True)
281
- if 'Model_results' not in st.session_state:
282
- st.session_state['Model_results']={'Model_object':[],
283
- 'Model_iteration':[],
284
- 'Feature_set':[],
285
- 'MAPE':[],
286
- 'R2':[],
287
- 'ADJR2':[]
288
- }
289
-
290
- def reset_model_result_dct():
291
- st.session_state['Model_results']={'Model_object':[],
292
- 'Model_iteration':[],
293
- 'Feature_set':[],
294
- 'MAPE':[],
295
- 'R2':[],
296
- 'ADJR2':[]
297
- }
298
-
299
- # if st.button('Build Model'):
300
- if 'iterations' not in st.session_state:
301
- st.session_state['iterations']=0
302
- # st.write("1",st.session_state["final_selection"])
303
-
304
- if 'final_selection' not in st.session_state:
305
- st.session_state['final_selection']=False
306
-
307
- save_path = r"Model/"
308
- with columns[1]:
309
- if st.session_state['final_selection']:
310
- st.write(f'Total combinations created {format_numbers(len(st.session_state["final_selection"]))}')
311
-
312
-
313
- if st.checkbox('Build all iterations'):
314
- iterations=len(st.session_state['final_selection'])
315
- else:
316
- iterations = st.number_input('Select the number of iterations to perform', min_value=0, step=100, value=st.session_state['iterations'],on_change=reset_model_result_dct)
317
- # st.write("iterations=", iterations)
318
-
319
- if st.button('Build Model',on_click=reset_model_result_dct):
320
- st.session_state['iterations']=iterations
321
- # st.write("2",st.session_state["final_selection"])
322
-
323
- # Section 4 - Model
324
-
325
- st.session_state['media_data']=st.session_state['media_data'].fillna(method='ffill')
326
- st.markdown(
327
- 'Data Split -- Training Period: May 9th, 2023 - October 5th,2023 , Testing Period: October 6th, 2023 - November 7th, 2023 ')
328
- progress_bar = st.progress(0) # Initialize the progress bar
329
- # time_remaining_text = st.empty() # Create an empty space for time remaining text
330
- start_time = time.time() # Record the start time
331
- progress_text = st.empty()
332
- # time_elapsed_text = st.empty()
333
- # for i, selected_features in enumerate(st.session_state["final_selection"][40000:40000 + int(iterations)]):
334
- # st.write(st.session_state["final_selection"])
335
- # for i, selected_features in enumerate(st.session_state["final_selection"]):
336
- for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
337
- df = st.session_state['media_data']
338
-
339
- fet = [var for var in selected_features if len(var) > 0]
340
- inp_vars_str = " + ".join(fet) # new
341
-
342
-
343
- X = df[fet]
344
- y = revenue
345
- ss = MinMaxScaler()
346
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
347
- # X = sm.add_constant(X)
348
-
349
- X['total_approved_accounts_revenue'] = revenue # Sprint2
350
- X[panel_col] = df[panel_col] # Sprint2
351
-
352
-
353
-
354
- X_train=X.iloc[:8000]
355
- X_test=X.iloc[8000:]
356
- y_train=y.iloc[:8000]
357
- y_test=y.iloc[8000:]
358
-
359
-
360
-
361
- md = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
362
- data=X_train[['total_approved_accounts_revenue'] + fet],
363
- groups=X_train[panel_col])
364
- mdf = md.fit()
365
- predicted_values = mdf.fittedvalues
366
-
367
- # st.write(fet)
368
- # positive_coeff=fet
369
- # negetive_coeff=[]
370
-
371
- coefficients = mdf.fe_params.to_dict()
372
- model_possitive = [col for col in coefficients.keys() if coefficients[col] > 0]
373
- # st.write(positive_coeff)
374
- # st.write(model_possitive)
375
- pvalues = [var for var in list(mdf.pvalues) if var <= 0.06]
376
-
377
- # if (len(model_possitive) / len(selected_features)) > 0.9 and (len(pvalues) / len(selected_features)) >= 0.8:
378
- if (len(model_possitive) / len(selected_features)) > 0 and (len(pvalues) / len(selected_features)) >= 0: # srishti - changed just for testing, revert later
379
- # predicted_values = model.predict(X_train)
380
- mape = mean_absolute_percentage_error(y_train, predicted_values)
381
- r2 = r2_score(y_train, predicted_values)
382
- adjr2 = 1 - (1 - r2) * (len(y_train) - 1) / (len(y_train) - len(selected_features) - 1)
383
-
384
- filename = os.path.join(save_path, f"model_{i}.pkl")
385
- with open(filename, "wb") as f:
386
- pickle.dump(mdf, f)
387
- # with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
388
- # model = pickle.load(file)
389
-
390
- st.session_state['Model_results']['Model_object'].append(filename)
391
- st.session_state['Model_results']['Model_iteration'].append(i)
392
- st.session_state['Model_results']['Feature_set'].append(fet)
393
- st.session_state['Model_results']['MAPE'].append(mape)
394
- st.session_state['Model_results']['R2'].append(r2)
395
- st.session_state['Model_results']['ADJR2'].append(adjr2)
396
-
397
- current_time = time.time()
398
- time_taken = current_time - start_time
399
- time_elapsed_minutes = time_taken / 60
400
- completed_iterations_text = f"{i + 1}/{iterations}"
401
- progress_bar.progress((i + 1) / int(iterations))
402
- progress_text.text(f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
403
-
404
- st.write(f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
405
- pd.DataFrame(st.session_state['Model_results']).to_csv('model_output.csv')
406
-
407
- def to_percentage(value):
408
- return f'{value * 100:.1f}%'
409
-
410
- ## Section 5 - Select Model
411
- st.title('2. Select Models')
412
- if 'tick' not in st.session_state:
413
- st.session_state['tick']=False
414
- if st.checkbox('Show results of top 10 models (based on MAPE and Adj. R2)',value=st.session_state['tick']):
415
- st.session_state['tick']=True
416
- st.write('Select one model iteration to generate performance metrics for it:')
417
- data=pd.DataFrame(st.session_state['Model_results'])
418
- data.sort_values(by=['MAPE'],ascending=False,inplace=True)
419
- data.drop_duplicates(subset='Model_iteration',inplace=True)
420
- top_10=data.head(10)
421
- top_10['Rank']=np.arange(1,len(top_10)+1,1)
422
- top_10[['MAPE','R2','ADJR2']]=np.round(top_10[['MAPE','R2','ADJR2']],4).applymap(to_percentage)
423
- top_10_table = top_10[['Rank','Model_iteration','MAPE','ADJR2','R2']]
424
- #top_10_table.columns=[['Rank','Model Iteration Index','MAPE','Adjusted R2','R2']]
425
- gd=GridOptionsBuilder.from_dataframe(top_10_table)
426
- gd.configure_pagination(enabled=True)
427
- gd.configure_selection(use_checkbox=True)
428
-
429
-
430
- gridoptions=gd.build()
431
-
432
- table = AgGrid(top_10,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED)
433
-
434
- selected_rows=table.selected_rows
435
- # if st.session_state["selected_rows"] != selected_rows:
436
- # st.session_state["build_rc_cb"] = False
437
- st.session_state["selected_rows"] = selected_rows
438
- if 'Model' not in st.session_state:
439
- st.session_state['Model']={}
440
-
441
- # Section 6 - Display Results
442
-
443
- if len(selected_rows)>0:
444
- st.header('2.1 Results Summary')
445
-
446
- model_object=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Model_object']
447
- features_set=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Feature_set']
448
-
449
- with open(str(model_object.values[0]), 'rb') as file:
450
- # print(file)
451
- model = pickle.load(file)
452
- st.write(model.summary())
453
- st.header('2.2 Actual vs. Predicted Plot')
454
-
455
- df=st.session_state['media_data']
456
- X=df[features_set.values[0]]
457
- # X = sm.add_constant(X)
458
- y=revenue
459
-
460
- ss = MinMaxScaler()
461
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
462
-
463
- # Sprint2 changes
464
- X['total_approved_accounts_revenue'] = revenue # new
465
- X[panel_col] = df[panel_col]
466
- X[date_col]=date
467
-
468
-
469
-
470
- X_train=X.iloc[:8000]
471
- X_test=X.iloc[8000:].reset_index(drop=True)
472
- y_train=y.iloc[:8000]
473
- y_test=y.iloc[8000:].reset_index(drop=True)
474
-
475
-
476
- random_eff_df = get_random_effects(media_data, panel_col, model)
477
- train_pred = model.fittedvalues
478
- test_pred = mdf_predict(X_test, model, random_eff_df)
479
- print("__"*20, test_pred.isna().sum())
480
-
481
- # save x test to test - srishti
482
- x_test_to_save = X_test.copy()
483
- x_test_to_save['Actuals'] = y_test
484
- x_test_to_save['Predictions'] = test_pred
485
-
486
- x_train_to_save=X_train.copy()
487
- x_train_to_save['Actuals'] = y_train
488
- x_train_to_save['Predictions'] = train_pred
489
-
490
- x_train_to_save.to_csv('Test/x_train_to_save.csv',index=False)
491
- x_test_to_save.to_csv('Test/x_test_to_save.csv',index=False)
492
-
493
- st.session_state['X']=X_train
494
- st.session_state['features_set']=features_set.values[0]
495
- print("**"*20,"selected model features : ",features_set.values[0])
496
- metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_train[date_col], y_train, train_pred, model,target_column='Revenue',is_panel=True) # Sprint2
497
-
498
- st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
499
-
500
-
501
-
502
- st.markdown('## 2.3 Residual Analysis')
503
- columns=st.columns(2)
504
- with columns[0]:
505
- fig=plot_residual_predicted(y_train,train_pred,X_train) # Sprint2
506
- st.plotly_chart(fig)
507
-
508
- with columns[1]:
509
- st.empty()
510
- fig = qqplot(y_train,train_pred) # Sprint2
511
- st.plotly_chart(fig)
512
-
513
- with columns[0]:
514
- fig=residual_distribution(y_train,train_pred) # Sprint2
515
- st.pyplot(fig)
516
-
517
-
518
-
519
- vif_data = pd.DataFrame()
520
- # X=X.drop('const',axis=1)
521
- X_train_with_panels = X_train.copy() # Sprint2 -- creating a copy of xtrain. Later deleting panel, target & date from xtrain
522
- X_train.drop(columns=[target_col, panel_col, date_col], inplace=True) # Sprint2
523
- vif_data["Variable"] = X_train.columns
524
- vif_data["VIF"] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
525
- vif_data.sort_values(by=['VIF'],ascending=False,inplace=True)
526
- vif_data=np.round(vif_data)
527
- vif_data['VIF']=vif_data['VIF'].astype(float)
528
- st.header('2.4 Variance Inflation Factor (VIF)')
529
- #st.dataframe(vif_data)
530
- color_mapping = {
531
- 'darkgreen': (vif_data['VIF'] < 3),
532
- 'orange': (vif_data['VIF'] >= 3) & (vif_data['VIF'] <= 10),
533
- 'darkred': (vif_data['VIF'] > 10)
534
- }
535
-
536
- # Create a horizontal bar plot
537
- fig, ax = plt.subplots()
538
- fig.set_figwidth(10) # Adjust the width of the figure as needed
539
-
540
- # Sort the bars by descending VIF values
541
- vif_data = vif_data.sort_values(by='VIF', ascending=False)
542
-
543
- # Iterate through the color mapping and plot bars with corresponding colors
544
- for color, condition in color_mapping.items():
545
- subset = vif_data[condition]
546
- bars = ax.barh(subset["Variable"], subset["VIF"], color=color, label=color)
547
-
548
- # Add text annotations on top of the bars
549
- for bar in bars:
550
- width = bar.get_width()
551
- ax.annotate(f'{width:}', xy=(width, bar.get_y() + bar.get_height() / 2), xytext=(5, 0),
552
- textcoords='offset points', va='center')
553
-
554
- # Customize the plot
555
- ax.set_xlabel('VIF Values')
556
- #ax.set_title('2.4 Variance Inflation Factor (VIF)')
557
- #ax.legend(loc='upper right')
558
-
559
- # Display the plot in Streamlit
560
- st.pyplot(fig)
561
-
562
-
563
-
564
- with st.expander('Results Summary Test data'):
565
- # ss = MinMaxScaler()
566
- # X_test = pd.DataFrame(ss.fit_transform(X_test), columns=X_test.columns)
567
- st.header('2.2 Actual vs. Predicted Plot')
568
-
569
- metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_test[date_col], y_test, test_pred, model,target_column='Revenue',is_panel=True) # Sprint2
570
-
571
- st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
572
-
573
- st.markdown('## 2.3 Residual Analysis')
574
- columns=st.columns(2)
575
- with columns[0]:
576
- fig=plot_residual_predicted(revenue,test_pred,X_test) # Sprint2
577
- st.plotly_chart(fig)
578
-
579
- with columns[1]:
580
- st.empty()
581
- fig = qqplot(revenue,test_pred) # Sprint2
582
- st.plotly_chart(fig)
583
-
584
- with columns[0]:
585
- fig=residual_distribution(revenue,test_pred) # Sprint2
586
- st.pyplot(fig)
587
-
588
- value=False
589
- if st.checkbox('Save this model to tune',key='build_rc_cb'):
590
- mod_name=st.text_input('Enter model name')
591
- if len(mod_name)>0:
592
- st.session_state['Model'][mod_name]={"Model_object":model,'feature_set':st.session_state['features_set'],'X_train':X_train_with_panels}
593
- st.session_state['X_train']=X_train_with_panels
594
- st.session_state['X_test']=X_test
595
- st.session_state['y_train']=y_train
596
- st.session_state['y_test']=y_test
597
-
598
- # Sprint3 additions
599
- random_eff_df= get_random_effects(media_data, panel_col, model)
600
- st.session_state['random_effects']=random_eff_df
601
-
602
- st.session_state['pred_train']=model.fittedvalues
603
- st.session_state['pred_test']=mdf_predict(X_test, model, random_eff_df)
604
- # End of Sprint3 additions
605
-
606
- with open("best_models.pkl", "wb") as f:
607
- pickle.dump(st.session_state['Model'], f)
608
- st.success('Model saved! Proceed to the next page to tune the model')
609
- value=False
610
-
611
- # st.write(st.session_state['Model'][mod_name]['X_train'].columns)
612
- # st.write(st.session_state['X_test'].columns)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/3_Model_Tuning_with_panel.py DELETED
@@ -1,437 +0,0 @@
1
- '''
2
- MMO Build Sprint 3
3
- date :
4
- changes : capability to tune MixedLM as well as simple LR in the same page
5
- '''
6
-
7
- import streamlit as st
8
- import pandas as pd
9
- from Eda_functions import format_numbers
10
- import pickle
11
- from utilities import set_header,load_local_css
12
- import statsmodels.api as sm
13
- import re
14
- from sklearn.preprocessing import MinMaxScaler
15
- import matplotlib.pyplot as plt
16
- from statsmodels.stats.outliers_influence import variance_inflation_factor
17
- st.set_option('deprecation.showPyplotGlobalUse', False)
18
- import statsmodels.formula.api as smf
19
- from Data_prep_functions import *
20
-
21
- for i in ["model_tuned", "X_train_tuned", "X_test_tuned", "tuned_model_features"] :
22
- if i not in st.session_state :
23
- st.session_state[i] = None
24
-
25
- st.set_page_config(
26
- page_title="Model Tuning",
27
- page_icon=":shark:",
28
- layout="wide",
29
- initial_sidebar_state='collapsed'
30
- )
31
- load_local_css('styles.css')
32
- set_header()
33
-
34
- # Sprint3
35
- is_panel= True
36
- panel_col= 'dma' # set the panel column
37
- date_col = 'date'
38
- target_col = 'total_approved_accounts_revenue'
39
-
40
- st.title('1. Model Tuning')
41
-
42
-
43
- if "X_train" not in st.session_state:
44
- st.error(
45
- "Oops! It seems there are no saved models available. Please build and save a model from the previous page to proceed.")
46
- st.stop()
47
- X_train=st.session_state['X_train']
48
- X_test=st.session_state['X_test']
49
- y_train=st.session_state['y_train']
50
- y_test=st.session_state['y_test']
51
- df=st.session_state['media_data']
52
-
53
- # st.write(X_train.columns)
54
- # st.write(X_test.columns)
55
-
56
- with open("best_models.pkl", 'rb') as file:
57
- model_dict= pickle.load(file)
58
-
59
- if 'selected_model' not in st.session_state:
60
- st.session_state['selected_model']=0
61
-
62
- # st.write(model_dict[st.session_state["selected_model"]]['X_train'].columns)
63
-
64
- st.markdown('### 1.1 Event Flags')
65
- st.markdown('Helps in quantifying the impact of specific occurrences of events')
66
- with st.expander('Apply Event Flags'):
67
- st.session_state["selected_model"]=st.selectbox('Select Model to apply flags',model_dict.keys())
68
- model =model_dict[st.session_state["selected_model"]]['Model_object']
69
- date=st.session_state['date']
70
- date=pd.to_datetime(date)
71
- X_train =model_dict[st.session_state["selected_model"]]['X_train']
72
-
73
- features_set= model_dict[st.session_state["selected_model"]]['feature_set']
74
-
75
- col=st.columns(3)
76
- min_date=min(date)
77
- max_date=max(date)
78
- with col[0]:
79
- start_date=st.date_input('Select Start Date',min_date,min_value=min_date,max_value=max_date)
80
- with col[1]:
81
- end_date=st.date_input('Select End Date',max_date,min_value=min_date,max_value=max_date)
82
- with col[2]:
83
- repeat=st.selectbox('Repeat Annually',['Yes','No'],index=1)
84
- if repeat =='Yes':
85
- repeat=True
86
- else:
87
- repeat=False
88
- # X_train=sm.add_constant(X_train)
89
-
90
- if 'Flags' not in st.session_state:
91
- st.session_state['Flags']={}
92
- # print("**"*50)
93
- # print(y_train)
94
- # print("**"*50)
95
- # print(model.fittedvalues)
96
- if is_panel : # Sprint3
97
- met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train,
98
- model.fittedvalues, model,
99
- target_column='Revenue',
100
- flag=(start_date, end_date),
101
- repeat_all_years=repeat, is_panel=True)
102
- st.plotly_chart(fig_flag, use_container_width=True)
103
-
104
- # create flag on test
105
- met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test,
106
- st.session_state['pred_test'], model,
107
- target_column='Revenue',
108
- flag=(start_date, end_date),
109
- repeat_all_years=repeat, is_panel=True)
110
-
111
- else :
112
- met,line_values,fig_flag=plot_actual_vs_predicted(date[:150], y_train, model.predict(X_train), model,flag=(start_date,end_date),repeat_all_years=repeat)
113
- st.plotly_chart(fig_flag,use_container_width=True)
114
-
115
- met,test_line_values,fig_flag=plot_actual_vs_predicted(date[150:], y_test, model.predict(X_test), model,flag=(start_date,end_date),repeat_all_years=repeat)
116
-
117
-
118
- flag_name='f1'
119
- flag_name=st.text_input('Enter Flag Name')
120
- if st.button('Update flag'):
121
- st.session_state['Flags'][flag_name]= {}
122
- st.session_state['Flags'][flag_name]['train']=line_values
123
- st.session_state['Flags'][flag_name]['test']=test_line_values
124
- # st.write(st.session_state['Flags'][flag_name])
125
- st.success(f'{flag_name} stored')
126
-
127
- options=list(st.session_state['Flags'].keys())
128
- selected_options = []
129
- num_columns = 4
130
- num_rows = -(-len(options) // num_columns)
131
-
132
-
133
- tick=False
134
- if st.checkbox('Select all'):
135
- tick=True
136
- selected_options = []
137
- for row in range(num_rows):
138
- cols = st.columns(num_columns)
139
- for col in cols:
140
- if options:
141
- option = options.pop(0)
142
- selected = col.checkbox(option,value=tick)
143
- if selected:
144
- selected_options.append(option)
145
-
146
- st.markdown('### 1.2 Select Parameters to Apply')
147
- parameters=st.columns(3)
148
- with parameters[0]:
149
- Trend=st.checkbox("**Trend**")
150
- st.markdown('Helps account for long-term trends or seasonality that could influence advertising effectiveness')
151
- with parameters[1]:
152
- week_number=st.checkbox('**Week_number**')
153
- st.markdown('Assists in detecting and incorporating weekly patterns or seasonality')
154
- with parameters[2]:
155
- sine_cosine=st.checkbox('**Sine and Cosine Waves**')
156
- st.markdown('Helps in capturing cyclical patterns or seasonality in the data')
157
-
158
- if st.button('Build model with Selected Parameters and Flags'):
159
- st.header('2.1 Results Summary')
160
- # date=list(df.index)
161
- # df = df.reset_index(drop=True)
162
- # st.write(df.head(2))
163
- # X_train=df[features_set]
164
- ss = MinMaxScaler()
165
- if is_panel == True :
166
- X = X_train[features_set]
167
- X_train_tuned = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
168
- X_train_tuned[target_col] = X_train[target_col]
169
- X_train_tuned[date_col] = X_train[date_col]
170
- X_train_tuned[panel_col] = X_train[panel_col]
171
-
172
- X = X_test[features_set]
173
- X_test_tuned = pd.DataFrame(ss.transform(X), columns=X.columns)
174
- X_test_tuned[target_col] = X_test[target_col]
175
- X_test_tuned[date_col] = X_test[date_col]
176
- X_test_tuned[panel_col] = X_test[panel_col]
177
-
178
- else :
179
- X_train_tuned = pd.DataFrame(ss.fit_transform(X_train), columns=X_train.columns)
180
- X_train_tuned = sm.add_constant(X_train_tuned)
181
-
182
- X_test_tuned = pd.DataFrame(ss.transform(X_test), columns=X_test.columns)
183
- X_test_tuned = sm.add_constant(X_test_tuned)
184
-
185
- for flag in selected_options:
186
- X_train_tuned[flag]=st.session_state['Flags'][flag]['train']
187
- X_test_tuned[flag]=st.session_state['Flags'][flag]['test']
188
-
189
- #test
190
- # X_train_tuned.to_csv("Test/X_train_tuned_flag.csv",index=False)
191
- # X_test_tuned.to_csv("Test/X_test_tuned_flag.csv",index=False)
192
-
193
- new_features = features_set
194
- # print("()()"*20,flag, len(st.session_state['Flags'][flag]))
195
- if Trend:
196
- # Sprint3 - group by panel, calculate trend of each panel spearately. Add trend to new feature set
197
- if is_panel :
198
- newdata = pd.DataFrame()
199
- panel_wise_end_point_train = {}
200
- for panel, groupdf in X_train_tuned.groupby(panel_col):
201
- groupdf.sort_values(date_col, inplace=True)
202
- groupdf['Trend'] = np.arange(1, len(groupdf) + 1, 1)
203
- newdata = pd.concat([newdata, groupdf])
204
- panel_wise_end_point_train[panel] = len(groupdf)
205
- X_train_tuned = newdata.copy()
206
-
207
- test_newdata=pd.DataFrame()
208
- for panel, test_groupdf in X_test_tuned.groupby(panel_col):
209
- test_groupdf.sort_values(date_col, inplace=True)
210
- start = panel_wise_end_point_train[panel]+1
211
- end = start + len(test_groupdf)
212
- # print("??"*20, panel, len(test_groupdf), len(np.arange(start, end, 1)), start)
213
- test_groupdf['Trend'] = np.arange(start, end, 1)
214
- test_newdata = pd.concat([test_newdata, test_groupdf])
215
- X_test_tuned = test_newdata.copy()
216
-
217
- new_features = new_features + ['Trend']
218
-
219
- # test
220
- X_test_tuned.to_csv("Test/X_test_tuned_trend.csv", index=False)
221
- X_train_tuned.to_csv("Test/X_train_tuned_trend.csv", index=False)
222
- pd.concat([X_train_tuned,X_test_tuned]).sort_values([panel_col, date_col]).to_csv("Test/X_train_test_tuned_trend.csv", index=False)
223
-
224
- else :
225
- X_train_tuned['Trend']=np.arange(1,len(X_train_tuned)+1,1)
226
- X_test_tuned['Trend'] = np.arange(len(X_train_tuned)+1, len(X_train_tuned)+len(X_test_tuned), 1)
227
-
228
- if week_number :
229
- # Sprint3 - create weeknumber from date column in xtrain tuned. add week num to new feature set
230
- if is_panel :
231
- X_train_tuned[date_col] = pd.to_datetime(X_train_tuned[date_col])
232
- X_train_tuned['Week_number'] = X_train_tuned[date_col].dt.day_of_week
233
- if X_train_tuned['Week_number'].nunique() == 1 :
234
- st.write("All dates in the data are of the same week day. Hence Week number can't be used.")
235
- else :
236
- X_test_tuned[date_col] = pd.to_datetime(X_test_tuned[date_col])
237
- X_test_tuned['Week_number'] = X_test_tuned[date_col].dt.day_of_week
238
- new_features = new_features + ['Week_number']
239
-
240
- else :
241
- date = pd.to_datetime(date.values)
242
- X_train_tuned['Week_number'] = date.dt.day_of_week[:150]
243
- X_test_tuned['Week_number'] = date.dt.day_of_week[150:]
244
-
245
- if sine_cosine :
246
- # Sprint3 - create panel wise sine cosine waves in xtrain tuned. add to new feature set
247
- if is_panel :
248
- new_features = new_features + ['sine_wave', 'cosine_wave']
249
- newdata = pd.DataFrame()
250
- groups = X_train_tuned.groupby(panel_col)
251
- frequency = 2 * np.pi / 365 # Adjust the frequency as needed
252
-
253
- train_panel_wise_end_point = {}
254
- for panel, groupdf in groups:
255
- num_samples = len(groupdf)
256
- train_panel_wise_end_point[panel] = num_samples
257
- days_since_start = np.arange(num_samples)
258
- sine_wave = np.sin(frequency * days_since_start)
259
- cosine_wave = np.cos(frequency * days_since_start)
260
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
261
- assert len(sine_cosine_df) == len(groupdf)
262
- # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
263
- groupdf['sine_wave'] = sine_wave
264
- groupdf['cosine_wave'] = cosine_wave
265
- newdata = pd.concat([newdata, groupdf])
266
-
267
- test_groups = X_test_tuned.groupby(panel_col)
268
- for panel, test_groupdf in test_groups:
269
- num_samples = len(test_groupdf)
270
- start = train_panel_wise_end_point[panel]
271
- days_since_start = np.arange(start, start+num_samples, 1)
272
- # print("##", panel, num_samples, start, len(np.arange(start, start+num_samples, 1)))
273
- sine_wave = np.sin(frequency * days_since_start)
274
- cosine_wave = np.cos(frequency * days_since_start)
275
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
276
- assert len(sine_cosine_df) == len(test_groupdf)
277
- # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
278
- test_groupdf['sine_wave'] = sine_wave
279
- test_groupdf['cosine_wave'] = cosine_wave
280
- newdata = pd.concat([newdata, test_groupdf])
281
-
282
- X_train_tuned = newdata.copy()
283
-
284
-
285
- else :
286
- num_samples = len(X_train_tuned)
287
- frequency = 2 * np.pi / 365 # Adjust the frequency as needed
288
- days_since_start = np.arange(num_samples)
289
- sine_wave = np.sin(frequency * days_since_start)
290
- cosine_wave = np.cos(frequency * days_since_start)
291
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
292
- # Concatenate the sine and cosine waves with the scaled X DataFrame
293
- X_train_tuned = pd.concat([X_train_tuned, sine_cosine_df], axis=1)
294
-
295
- test_num_samples = len(X_test_tuned)
296
- start = num_samples
297
- days_since_start = np.arange(start, start+test_num_samples, 1)
298
- sine_wave = np.sin(frequency * days_since_start)
299
- cosine_wave = np.cos(frequency * days_since_start)
300
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
301
- # Concatenate the sine and cosine waves with the scaled X DataFrame
302
- X_test_tuned = pd.concat([X_test_tuned, sine_cosine_df], axis=1)
303
-
304
- # model
305
-
306
- if is_panel :
307
- if selected_options :
308
- new_features = new_features + selected_options
309
-
310
- inp_vars_str = " + ".join(new_features)
311
-
312
- # X_train_tuned.to_csv("Test/X_train_tuned.csv",index=False)
313
- # st.write(X_train_tuned[['total_approved_accounts_revenue'] + new_features].dtypes)
314
- # st.write(X_train_tuned[['total_approved_accounts_revenue', panel_col] + new_features].isna().sum())
315
-
316
- md_tuned = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
317
- data=X_train_tuned[['total_approved_accounts_revenue'] + new_features],
318
- groups=X_train_tuned[panel_col])
319
- model_tuned = md_tuned.fit()
320
-
321
-
322
-
323
- # plot act v pred for original model and tuned model
324
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train,
325
- model.fittedvalues, model,
326
- target_column='Revenue',
327
- is_panel=True)
328
- metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(X_train_tuned[date_col],
329
- X_train_tuned[target_col],
330
- model_tuned.fittedvalues,
331
- model_tuned,
332
- target_column='Revenue',
333
- is_panel=True)
334
-
335
- else :
336
- model_tuned = sm.OLS(y_train, X_train_tuned).fit()
337
-
338
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date[:150], y_train,
339
- model.predict(X_train), model,
340
- target_column='Revenue')
341
- metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(date[:150], y_train,
342
- model_tuned.predict(
343
- X_train_tuned),
344
- model_tuned,
345
- target_column='Revenue')
346
-
347
- # st.write(metrics_table_tuned)
348
- mape=np.round(metrics_table.iloc[0,1],2)
349
- r2=np.round(metrics_table.iloc[1,1],2)
350
- adjr2=np.round(metrics_table.iloc[2,1],2)
351
-
352
- mape_tuned=np.round(metrics_table_tuned.iloc[0,1],2)
353
- r2_tuned=np.round(metrics_table_tuned.iloc[1,1],2)
354
- adjr2_tuned=np.round(metrics_table_tuned.iloc[2,1],2)
355
-
356
- parameters_=st.columns(3)
357
- with parameters_[0]:
358
- st.metric('R2',r2_tuned,np.round(r2_tuned-r2,2))
359
- with parameters_[1]:
360
- st.metric('Adjusted R2',adjr2_tuned,np.round(adjr2_tuned-adjr2,2))
361
- with parameters_[2]:
362
- st.metric('MAPE',mape_tuned,np.round(mape_tuned-mape,2),'inverse')
363
-
364
- st.header('2.2 Actual vs. Predicted Plot')
365
- # if is_panel:
366
- # metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date, y_train, model.predict(X_train),
367
- # model, target_column='Revenue',is_panel=True)
368
- # else:
369
- # metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')
370
-
371
- metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_train_tuned[date_col], X_train_tuned[target_col],
372
- model_tuned.fittedvalues, model_tuned,
373
- target_column='Revenue',
374
- is_panel=True)
375
- # plot_actual_vs_predicted(X_train[date_col], y_train,
376
- # model.fittedvalues, model,
377
- # target_column='Revenue',
378
- # is_panel=is_panel)
379
-
380
- st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
381
-
382
-
383
-
384
- st.markdown('## 2.3 Residual Analysis')
385
- columns=st.columns(2)
386
- with columns[0]:
387
- fig=plot_residual_predicted(y_train,model.predict(X_train),X_train)
388
- st.plotly_chart(fig)
389
-
390
- with columns[1]:
391
- st.empty()
392
- fig = qqplot(y_train,model.predict(X_train))
393
- st.plotly_chart(fig)
394
-
395
- with columns[0]:
396
- fig=residual_distribution(y_train,model.predict(X_train))
397
- st.pyplot(fig)
398
-
399
- if st.checkbox('Use this model to build response curves',key='123'):
400
- st.session_state["tuned_model"] = model_tuned
401
- st.session_state["X_train_tuned"] = X_train_tuned
402
- st.session_state["X_test_tuned"] = X_test_tuned
403
- st.session_state["X_train_tuned"] = X_train_tuned
404
- st.session_state["X_test_tuned"] = X_test_tuned
405
- if is_panel :
406
- st.session_state["tuned_model_features"] = new_features
407
- with open("tuned_model.pkl", "wb") as f:
408
- pickle.dump(st.session_state['tuned_model'], f)
409
- st.success('Model saved!')
410
-
411
- # raw_data=df[features_set]
412
- # columns_raw=[re.split(r"(_lag|_adst)",col)[0] for col in raw_data.columns]
413
- # raw_data.columns=columns_raw
414
- # columns_media=[col for col in columns_raw if Categorised_data[col]['BB']=='Media']
415
- # raw_data=raw_data[columns_media]
416
-
417
- # raw_data['Date']=list(df.index)
418
-
419
- # spends_var=[col for col in df.columns if "spends" in col.lower() and 'adst' not in col.lower() and 'lag' not in col.lower()]
420
- # spends_df=df[spends_var]
421
- # spends_df['Week']=list(df.index)
422
-
423
-
424
- # j=0
425
- # X1=X.copy()
426
- # col=X1.columns
427
- # for i in model.params.values:
428
- # X1[col[j]]=X1.iloc[:,j]*i
429
- # j+=1
430
- # contribution_df=X1
431
- # contribution_df['Date']=list(df.index)
432
- # excel_file='Overview_data.xlsx'
433
-
434
- # with pd.ExcelWriter(excel_file,engine='xlsxwriter') as writer:
435
- # raw_data.to_excel(writer,sheet_name='RAW DATA MMM',index=False)
436
- # spends_df.to_excel(writer,sheet_name='SPEND INPUT',index=False)
437
- # contribution_df.to_excel(writer,sheet_name='CONTRIBUTION MMM')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/4_Model_Build.py DELETED
@@ -1,826 +0,0 @@
1
- '''
2
- MMO Build Sprint 3
3
- additions : adding more variables to session state for saved model : random effect, predicted train & test
4
-
5
- MMO Build Sprint 4
6
- additions : ability to run models for different response metrics
7
- '''
8
-
9
- import streamlit as st
10
- import pandas as pd
11
- import plotly.express as px
12
- import plotly.graph_objects as go
13
- from Eda_functions import format_numbers
14
- import numpy as np
15
- import pickle
16
- from st_aggrid import AgGrid
17
- from st_aggrid import GridOptionsBuilder, GridUpdateMode
18
- from utilities import set_header, load_local_css
19
- from st_aggrid import GridOptionsBuilder
20
- import time
21
- import itertools
22
- import statsmodels.api as sm
23
- import numpy as npc
24
- import re
25
- import itertools
26
- from sklearn.metrics import mean_absolute_error, r2_score, mean_absolute_percentage_error
27
- from sklearn.preprocessing import MinMaxScaler
28
- import os
29
- import matplotlib.pyplot as plt
30
- from statsmodels.stats.outliers_influence import variance_inflation_factor
31
-
32
- st.set_option('deprecation.showPyplotGlobalUse', False)
33
- import statsmodels.api as sm
34
- import statsmodels.formula.api as smf
35
-
36
- from datetime import datetime
37
- import seaborn as sns
38
- from Data_prep_functions import *
39
-
40
-
41
-
42
- def get_random_effects(media_data, panel_col, mdf):
43
- random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
44
-
45
- for i, market in enumerate(media_data[panel_col].unique()):
46
- print(i, end='\r')
47
- intercept = mdf.random_effects[market].values[0]
48
- random_eff_df.loc[i, 'random_effect'] = intercept
49
- random_eff_df.loc[i, panel_col] = market
50
-
51
- return random_eff_df
52
-
53
-
54
- def mdf_predict(X_df, mdf, random_eff_df):
55
- X = X_df.copy()
56
- X['fixed_effect'] = mdf.predict(X)
57
- X = pd.merge(X, random_eff_df, on=panel_col, how='left')
58
- X['pred'] = X['fixed_effect'] + X['random_effect']
59
- # X.to_csv('Test/megred_df.csv',index=False)
60
- X.drop(columns=['fixed_effect', 'random_effect'], inplace=True)
61
- return X['pred']
62
-
63
-
64
- st.set_page_config(
65
- page_title="Model Build",
66
- page_icon=":shark:",
67
- layout="wide",
68
- initial_sidebar_state='collapsed'
69
- )
70
-
71
- load_local_css('styles.css')
72
- set_header()
73
-
74
- st.title('1. Build Your Model')
75
-
76
- with open("data_import.pkl", "rb") as f:
77
- data = pickle.load(f)
78
-
79
- st.session_state['bin_dict'] = data["bin_dict"]
80
-
81
- #st.write(data["bin_dict"])
82
-
83
- with open("final_df_transformed.pkl", "rb") as f:
84
- data = pickle.load(f)
85
-
86
- # Accessing the loaded objects
87
- media_data = data["final_df_transformed"]
88
-
89
- # Sprint4 - available response metrics is a list of all reponse metrics in the data
90
- ## these will be put in a drop down
91
-
92
- st.session_state['media_data']=media_data
93
-
94
- if 'available_response_metrics' not in st.session_state:
95
- # st.session_state['available_response_metrics'] = ['Total Approved Accounts - Revenue',
96
- # 'Total Approved Accounts - Appsflyer',
97
- # 'Account Requests - Appsflyer',
98
- # 'App Installs - Appsflyer']
99
-
100
- st.session_state['available_response_metrics']= st.session_state['bin_dict']["Response Metrics"]
101
- # Sprint4
102
- if "is_tuned_model" not in st.session_state:
103
- st.session_state["is_tuned_model"] = {}
104
- for resp_metric in st.session_state['available_response_metrics'] :
105
- resp_metric=resp_metric.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
106
- st.session_state["is_tuned_model"][resp_metric] = False
107
-
108
- # Sprint4 - used_response_metrics is a list of resp metrics for which user has created & saved a model
109
- if 'used_response_metrics' not in st.session_state:
110
- st.session_state['used_response_metrics'] = []
111
-
112
- # Sprint4 - saved_model_names
113
- if 'saved_model_names' not in st.session_state:
114
- st.session_state['saved_model_names'] = []
115
-
116
- # if "model_save_flag" not in st.session_state:
117
- # st.session_state["model_save_flag"]=False
118
- # def reset_save():
119
- # st.session_state["model_save_flag"]=False
120
- # def set_save():
121
- # st.session_state["model_save_flag"]=True
122
- # Sprint4 - select a response metric
123
-
124
-
125
- sel_target_col = st.selectbox("Select the response metric",
126
- st.session_state['available_response_metrics'])
127
- # , on_change=reset_save())
128
- target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
129
-
130
- new_name_dct={col:col.lower().replace('.','_').lower().replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in media_data.columns}
131
-
132
- media_data.columns=[col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in media_data.columns]
133
-
134
- #st.write(st.session_state['bin_dict'])
135
- panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
136
- date_col = 'date'
137
-
138
- #st.write(media_data)
139
-
140
- is_panel = True if len(panel_col)>0 else False
141
-
142
- if 'is_panel' not in st.session_state:
143
- st.session_state['is_panel']=False
144
-
145
-
146
-
147
- # if st.toggle('Apply Transformations on DMA/Panel Level'):
148
- # media_data = pd.read_csv(r'C:\Users\SrishtiVerma\Mastercard\Sprint2\upf_data_converted_randomized_resp_metrics.csv')
149
- # media_data.columns = [i.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for i in
150
- # media_data.columns]
151
- # dma = st.selectbox('Select the Level of data ',
152
- # [col for col in media_data.columns if col.lower() in ['dma', 'panel', 'markets']])
153
- # # is_panel = True
154
- # # st.session_state['is_panel']=True
155
- #
156
- # else:
157
- # # """ code to aggregate data on date """
158
- # media_data = pd.read_excel(r'C:\Users\SrishtiVerma\Mastercard\Sprint1\Tactic Level Models\Tactic_level_data_imp_clicks_spends.xlsx')
159
- # media_data.columns = [i.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for i in
160
- # media_data.columns]
161
- # dma = None
162
- # # is_panel = False
163
- # # st.session_state['is_panel']=False
164
-
165
- #media_data = st.session_state["final_df"]
166
-
167
-
168
-
169
- # st.write(media_data.columns)
170
-
171
- media_data.sort_values(date_col, inplace=True)
172
- media_data.reset_index(drop=True, inplace=True)
173
-
174
- date = media_data[date_col]
175
- st.session_state['date'] = date
176
- # revenue=media_data[target_col]
177
- y = media_data[target_col]
178
-
179
- if is_panel:
180
- spends_data = media_data[
181
- [c for c in media_data.columns if "_cost" in c.lower() or "_spend" in c.lower()] + [date_col, panel_col]]
182
- # Sprint3 - spends for resp curves
183
- else:
184
- spends_data = media_data[
185
- [c for c in media_data.columns if "_cost" in c.lower() or "_spend" in c.lower()] + [date_col]]
186
-
187
- y = media_data[target_col]
188
- # media_data.drop([target_col],axis=1,inplace=True)
189
- media_data.drop([date_col], axis=1, inplace=True)
190
- media_data.reset_index(drop=True, inplace=True)
191
-
192
- # dma_dict={ dm:media_data[media_data[dma]==dm] for dm in media_data[dma].unique()}
193
-
194
- # st.markdown('## Select the Range of Transformations')
195
- columns = st.columns(2)
196
-
197
- old_shape = media_data.shape
198
-
199
- if "old_shape" not in st.session_state:
200
- st.session_state['old_shape'] = old_shape
201
-
202
- # with columns[0]:
203
- # slider_value_adstock = st.slider('Select Adstock Range (only applied to media)', 0.0, 1.0, (0.2, 0.4), step=0.1,
204
- # format="%.2f")
205
- # with columns[1]:
206
- # slider_value_lag = st.slider('Select Lag Range (applied to media, seasonal, macroeconomic variables)', 1, 7, (1, 3),
207
- # step=1)
208
-
209
-
210
- # with columns[2]:
211
- # slider_value_power=st.slider('Select Power range (only applied to media )',0,4,(1,2),step=1)
212
-
213
- # with columns[1]:
214
- # st.number_input('Select the range of half saturation point ',min_value=1,max_value=5)
215
- # st.number_input('Select the range of ')
216
-
217
- # Section 1 - Transformations Functions
218
- # def lag(data, features, lags, dma=None):
219
- # if dma:
220
- #
221
- # transformed_data = pd.concat(
222
- # [data.groupby([dma])[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags], axis=1)
223
- # # transformed_data = transformed_data.fillna(method='bfill')
224
- # transformed_data = transformed_data.bfill() # Sprint4 - fillna getting deprecated
225
- # return pd.concat([transformed_data, data], axis=1)
226
- #
227
- # else:
228
- #
229
- # # ''' data should be aggregated on date'''
230
- #
231
- # transformed_data = pd.concat([data[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags], axis=1)
232
- # # transformed_data = transformed_data.fillna(method='bfill')
233
- # transformed_data = transformed_data.bfill()
234
- #
235
- # return pd.concat([transformed_data, data], axis=1)
236
- #
237
- #
238
- # # adstock
239
- # def adstock(df, alphas, cutoff, features, dma=None):
240
- # if dma:
241
- # transformed_data = pd.DataFrame()
242
- # for d in df[dma].unique():
243
- # dma_sub_df = df[df[dma] == d]
244
- # n = len(dma_sub_df)
245
- #
246
- # weights = np.array(
247
- # [[[alpha ** (i - j) if i >= j and j >= i - cutoff else 0. for j in range(n)] for i in range(n)] for
248
- # alpha in alphas])
249
- # X = dma_sub_df[features].to_numpy()
250
- #
251
- # res = pd.DataFrame(np.hstack(weights @ X),
252
- # columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
253
- #
254
- # transformed_data = pd.concat([transformed_data, res], axis=0)
255
- # transformed_data.reset_index(drop=True, inplace=True)
256
- # return pd.concat([transformed_data, df], axis=1)
257
- #
258
- # else:
259
- #
260
- # n = len(df)
261
- #
262
- # weights = np.array(
263
- # [[[alpha ** (i - j) if i >= j and j >= i - cutoff else 0. for j in range(n)] for i in range(n)] for alpha in
264
- # alphas])
265
- #
266
- # X = df[features].to_numpy()
267
- # res = pd.DataFrame(np.hstack(weights @ X),
268
- # columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
269
- # return pd.concat([res, df], axis=1)
270
-
271
-
272
- # Section 2 - Begin Transformations
273
-
274
- if 'media_data' not in st.session_state:
275
- st.session_state['media_data'] = pd.DataFrame()
276
-
277
- # Sprint3
278
- if "orig_media_data" not in st.session_state:
279
- st.session_state['orig_media_data'] = pd.DataFrame()
280
-
281
- # Sprint3 additions
282
- if 'random_effects' not in st.session_state:
283
- st.session_state['random_effects'] = pd.DataFrame()
284
- if 'pred_train' not in st.session_state:
285
- st.session_state['pred_train'] = []
286
- if 'pred_test' not in st.session_state:
287
- st.session_state['pred_test'] = []
288
- # end of Sprint3 additions
289
-
290
- # variables_to_be_transformed=[col for col in media_data.columns if col.lower() not in ['dma','panel'] ] # change for buckets
291
- # variables_to_be_transformed = [col for col in media_data.columns if
292
- # '_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
293
- #
294
- # with columns[0]:
295
- # if st.button('Apply Transformations'):
296
- # with st.spinner('Applying Transformations'):
297
- # transformed_data_lag = lag(media_data, features=variables_to_be_transformed,
298
- # lags=np.arange(slider_value_lag[0], slider_value_lag[1] + 1, 1), dma=dma)
299
- #
300
- # # variables_to_be_transformed=[col for col in list(transformed_data_lag.columns) if col not in ['Date','DMA','Panel']] #change for buckets
301
- # variables_to_be_transformed = [col for col in media_data.columns if
302
- # '_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
303
- #
304
- # transformed_data_adstock = adstock(df=transformed_data_lag,
305
- # alphas=np.arange(slider_value_adstock[0], slider_value_adstock[1], 0.1),
306
- # cutoff=8, features=variables_to_be_transformed, dma=dma)
307
- #
308
- # # st.success('Done')
309
- # st.success("Transformations complete!")
310
- #
311
- # st.write(f'old shape {old_shape}, new shape {transformed_data_adstock.shape}')
312
- #
313
- # transformed_data_adstock.columns = [c.replace(".", "_") for c in
314
- # transformed_data_adstock.columns] # srishti
315
- # st.session_state['media_data'] = transformed_data_adstock # srishti
316
- # # Sprint3
317
- # orig_media_data = media_data.copy()
318
- # orig_media_data[date_col] = date
319
- # orig_media_data[target_col] = y
320
- # st.session_state['orig_media_data'] = orig_media_data # srishti
321
- #
322
- # # with st.spinner('Applying Transformations'):
323
- # # time.sleep(2)
324
- # # st.success("Transformations complete!")
325
- #
326
- # # if st.session_state['media_data'].shape[1]>old_shape[1]:
327
- # # with columns[0]:
328
- # # st.write(f'Total no.of variables before transformation: {old_shape[1]}, Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
329
- # # st.write(f'Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
330
-
331
- # Section 3 - Create combinations
332
-
333
- # bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','FB: Level Achieved - Tier 1 Impressions',
334
- # ' FB: Level Achieved - Tier 2 Impressions','paid_social_others',
335
- # ' GA App: Will And Cid Pequena Baixo Risco Clicks',
336
- # 'digital_tactic_others',"programmatic"
337
- # ]
338
-
339
- # srishti - bucket names changed
340
- bucket = ['paid_search', 'kwai', 'indicacao', 'infleux', 'influencer', 'fb_level_achieved_tier_2',
341
- 'fb_level_achieved_tier_1', 'paid_social_others',
342
- 'ga_app',
343
- 'digital_tactic_others', "programmatic"
344
- ]
345
-
346
- with columns[0]:
347
- if st.button('Create Combinations of Variables'):
348
-
349
- top_3_correlated_features = []
350
- # # for col in st.session_state['media_data'].columns[:19]:
351
- # original_cols = [c for c in st.session_state['media_data'].columns if
352
- # "_clicks" in c.lower() or "_impressions" in c.lower()]
353
- #original_cols = [c for c in original_cols if "_lag" not in c.lower() and "_adstock" not in c.lower()]
354
-
355
- original_cols=st.session_state['bin_dict']['Media'] + st.session_state['bin_dict']['Internal']
356
-
357
- original_cols=[col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in original_cols]
358
-
359
- #st.write(original_cols)
360
- # for col in st.session_state['media_data'].columns[:19]:
361
- for col in original_cols: # srishti - new
362
- corr_df = pd.concat([st.session_state['media_data'].filter(regex=col),
363
- y], axis=1).corr()[target_col].iloc[:-1]
364
- top_3_correlated_features.append(list(corr_df.sort_values(ascending=False).head(2).index))
365
- flattened_list = [item for sublist in top_3_correlated_features for item in sublist]
366
- # all_features_set={var:[col for col in flattened_list if var in col] for var in bucket}
367
- all_features_set = {var: [col for col in flattened_list if var in col] for var in bucket if
368
- len([col for col in flattened_list if var in col]) > 0} # srishti
369
-
370
- channels_all = [values for values in all_features_set.values()]
371
- st.session_state['combinations'] = list(itertools.product(*channels_all))
372
- # if 'combinations' not in st.session_state:
373
- # st.session_state['combinations']=combinations_all
374
-
375
- st.session_state['final_selection'] = st.session_state['combinations']
376
- st.success('Done')
377
-
378
- # revenue.reset_index(drop=True,inplace=True)
379
- y.reset_index(drop=True, inplace=True)
380
- if 'Model_results' not in st.session_state:
381
- st.session_state['Model_results'] = {'Model_object': [],
382
- 'Model_iteration': [],
383
- 'Feature_set': [],
384
- 'MAPE': [],
385
- 'R2': [],
386
- 'ADJR2': [],
387
- 'pos_count': []
388
- }
389
-
390
-
391
- def reset_model_result_dct():
392
- st.session_state['Model_results'] = {'Model_object': [],
393
- 'Model_iteration': [],
394
- 'Feature_set': [],
395
- 'MAPE': [],
396
- 'R2': [],
397
- 'ADJR2': [],
398
- 'pos_count': []
399
- }
400
-
401
- # if st.button('Build Model'):
402
-
403
-
404
- if 'iterations' not in st.session_state:
405
- st.session_state['iterations'] = 0
406
-
407
- if 'final_selection' not in st.session_state:
408
- st.session_state['final_selection'] = False
409
-
410
- save_path = r"Model/"
411
- with columns[1]:
412
- if st.session_state['final_selection']:
413
- st.write(f'Total combinations created {format_numbers(len(st.session_state["final_selection"]))}')
414
-
415
- if st.checkbox('Build all iterations'):
416
- iterations = len(st.session_state['final_selection'])
417
- else:
418
- iterations = st.number_input('Select the number of iterations to perform', min_value=0, step=100,
419
- value=st.session_state['iterations'], on_change=reset_model_result_dct)
420
- # st.write("iterations=", iterations)
421
-
422
-
423
- if st.button('Build Model', on_click=reset_model_result_dct):
424
- st.session_state['iterations'] = iterations
425
-
426
- # Section 4 - Model
427
- # st.session_state['media_data'] = st.session_state['media_data'].fillna(method='ffill')
428
- st.session_state['media_data'] = st.session_state['media_data'].ffill()
429
- st.markdown(
430
- 'Data Split -- Training Period: May 9th, 2023 - October 5th,2023 , Testing Period: October 6th, 2023 - November 7th, 2023 ')
431
- progress_bar = st.progress(0) # Initialize the progress bar
432
- # time_remaining_text = st.empty() # Create an empty space for time remaining text
433
- start_time = time.time() # Record the start time
434
- progress_text = st.empty()
435
-
436
- # time_elapsed_text = st.empty()
437
- # for i, selected_features in enumerate(st.session_state["final_selection"][40000:40000 + int(iterations)]):
438
- # st.write(st.session_state["final_selection"])
439
- # for i, selected_features in enumerate(st.session_state["final_selection"]):
440
-
441
- if is_panel == True:
442
- for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
443
- df = st.session_state['media_data']
444
-
445
- fet = [var for var in selected_features if len(var) > 0]
446
- inp_vars_str = " + ".join(fet) # new
447
-
448
- X = df[fet]
449
- y = df[target_col]
450
- ss = MinMaxScaler()
451
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
452
-
453
- X[target_col] = y # Sprint2
454
- X[panel_col] = df[panel_col] # Sprint2
455
-
456
- X_train = X.iloc[:8000]
457
- X_test = X.iloc[8000:]
458
- y_train = y.iloc[:8000]
459
- y_test = y.iloc[8000:]
460
-
461
- print(X_train.shape)
462
- # model = sm.OLS(y_train, X_train).fit()
463
- md_str = target_col + " ~ " + inp_vars_str
464
- # md = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
465
- # data=X_train[[target_col] + fet],
466
- # groups=X_train[panel_col])
467
- md = smf.mixedlm(md_str,
468
- data=X_train[[target_col] + fet],
469
- groups=X_train[panel_col])
470
- mdf = md.fit()
471
- predicted_values = mdf.fittedvalues
472
-
473
- coefficients = mdf.fe_params.to_dict()
474
- model_positive = [col for col in coefficients.keys() if coefficients[col] > 0]
475
-
476
- pvalues = [var for var in list(mdf.pvalues) if var <= 0.06]
477
-
478
- if (len(model_positive) / len(selected_features)) > 0 and (
479
- len(pvalues) / len(selected_features)) >= 0: # srishti - changed just for testing, revert later
480
- # predicted_values = model.predict(X_train)
481
- mape = mean_absolute_percentage_error(y_train, predicted_values)
482
- r2 = r2_score(y_train, predicted_values)
483
- adjr2 = 1 - (1 - r2) * (len(y_train) - 1) / (len(y_train) - len(selected_features) - 1)
484
-
485
- filename = os.path.join(save_path, f"model_{i}.pkl")
486
- with open(filename, "wb") as f:
487
- pickle.dump(mdf, f)
488
- # with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
489
- # model = pickle.load(file)
490
-
491
- st.session_state['Model_results']['Model_object'].append(filename)
492
- st.session_state['Model_results']['Model_iteration'].append(i)
493
- st.session_state['Model_results']['Feature_set'].append(fet)
494
- st.session_state['Model_results']['MAPE'].append(mape)
495
- st.session_state['Model_results']['R2'].append(r2)
496
- st.session_state['Model_results']['pos_count'].append(len(model_positive))
497
- st.session_state['Model_results']['ADJR2'].append(adjr2)
498
-
499
- current_time = time.time()
500
- time_taken = current_time - start_time
501
- time_elapsed_minutes = time_taken / 60
502
- completed_iterations_text = f"{i + 1}/{iterations}"
503
- progress_bar.progress((i + 1) / int(iterations))
504
- progress_text.text(
505
- f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
506
- st.write(
507
- f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
508
-
509
- else:
510
-
511
- for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
512
- df = st.session_state['media_data']
513
-
514
- fet = [var for var in selected_features if len(var) > 0]
515
- inp_vars_str = " + ".join(fet)
516
-
517
- X = df[fet]
518
- y = df[target_col]
519
- ss = MinMaxScaler()
520
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
521
- X = sm.add_constant(X)
522
- X_train = X.iloc[:130]
523
- X_test = X.iloc[130:]
524
- y_train = y.iloc[:130]
525
- y_test = y.iloc[130:]
526
-
527
- model = sm.OLS(y_train, X_train).fit()
528
-
529
-
530
- coefficients = model.params.to_list()
531
- model_positive = [coef for coef in coefficients if coef > 0]
532
- predicted_values = model.predict(X_train)
533
- pvalues = [var for var in list(model.pvalues) if var <= 0.06]
534
-
535
- # if (len(model_possitive) / len(selected_features)) > 0.9 and (len(pvalues) / len(selected_features)) >= 0.8:
536
- if (len(model_positive) / len(selected_features)) > 0 and (len(pvalues) / len(
537
- selected_features)) >= 0.5: # srishti - changed just for testing, revert later VALID MODEL CRITERIA
538
- # predicted_values = model.predict(X_train)
539
- mape = mean_absolute_percentage_error(y_train, predicted_values)
540
- adjr2 = model.rsquared_adj
541
- r2 = model.rsquared
542
-
543
- filename = os.path.join(save_path, f"model_{i}.pkl")
544
- with open(filename, "wb") as f:
545
- pickle.dump(model, f)
546
- # with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
547
- # model = pickle.load(file)
548
-
549
- st.session_state['Model_results']['Model_object'].append(filename)
550
- st.session_state['Model_results']['Model_iteration'].append(i)
551
- st.session_state['Model_results']['Feature_set'].append(fet)
552
- st.session_state['Model_results']['MAPE'].append(mape)
553
- st.session_state['Model_results']['R2'].append(r2)
554
- st.session_state['Model_results']['ADJR2'].append(adjr2)
555
- st.session_state['Model_results']['pos_count'].append(len(model_positive))
556
-
557
- current_time = time.time()
558
- time_taken = current_time - start_time
559
- time_elapsed_minutes = time_taken / 60
560
- completed_iterations_text = f"{i + 1}/{iterations}"
561
- progress_bar.progress((i + 1) / int(iterations))
562
- progress_text.text(
563
- f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
564
- st.write(
565
- f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
566
-
567
- pd.DataFrame(st.session_state['Model_results']).to_csv('model_output.csv')
568
-
569
-
570
- def to_percentage(value):
571
- return f'{value * 100:.1f}%'
572
-
573
- ## Section 5 - Select Model
574
- st.title('2. Select Models')
575
- if 'tick' not in st.session_state:
576
- st.session_state['tick'] = False
577
- if st.checkbox('Show results of top 10 models (based on MAPE and Adj. R2)', value=st.session_state['tick']):
578
- st.session_state['tick'] = True
579
- st.write('Select one model iteration to generate performance metrics for it:')
580
- data = pd.DataFrame(st.session_state['Model_results'])
581
- data = data[data['pos_count']==data['pos_count'].max()].reset_index(drop=True) # Sprint4 -- Srishti -- only show models with the lowest num of neg coeffs
582
- data.sort_values(by=['ADJR2'], ascending=False, inplace=True)
583
- data.drop_duplicates(subset='Model_iteration', inplace=True)
584
- top_10 = data.head(10)
585
- top_10['Rank'] = np.arange(1, len(top_10) + 1, 1)
586
- top_10[['MAPE', 'R2', 'ADJR2']] = np.round(top_10[['MAPE', 'R2', 'ADJR2']], 4).applymap(to_percentage)
587
- top_10_table = top_10[['Rank', 'Model_iteration', 'MAPE', 'ADJR2', 'R2']]
588
- # top_10_table.columns=[['Rank','Model Iteration Index','MAPE','Adjusted R2','R2']]
589
- gd = GridOptionsBuilder.from_dataframe(top_10_table)
590
- gd.configure_pagination(enabled=True)
591
-
592
- gd.configure_selection(
593
- use_checkbox=True,
594
- selection_mode="single",
595
- pre_select_all_rows=False,
596
- pre_selected_rows=[1],
597
- )
598
-
599
- gridoptions = gd.build()
600
-
601
- table = AgGrid(top_10, gridOptions=gridoptions, update_mode=GridUpdateMode.SELECTION_CHANGED)
602
-
603
- selected_rows = table.selected_rows
604
- # if st.session_state["selected_rows"] != selected_rows:
605
- # st.session_state["build_rc_cb"] = False
606
- st.session_state["selected_rows"] = selected_rows
607
- if 'Model' not in st.session_state:
608
- st.session_state['Model'] = {}
609
-
610
- # Section 6 - Display Results
611
-
612
- if len(selected_rows) > 0:
613
- st.header('2.1 Results Summary')
614
-
615
- model_object = data[data['Model_iteration'] == selected_rows[0]['Model_iteration']]['Model_object']
616
- features_set = data[data['Model_iteration'] == selected_rows[0]['Model_iteration']]['Feature_set']
617
-
618
- with open(str(model_object.values[0]), 'rb') as file:
619
- # print(file)
620
- model = pickle.load(file)
621
- st.write(model.summary())
622
- st.header('2.2 Actual vs. Predicted Plot')
623
-
624
- if is_panel :
625
- df = st.session_state['media_data']
626
- X = df[features_set.values[0]]
627
- y = df[target_col]
628
-
629
- ss = MinMaxScaler()
630
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
631
-
632
- # Sprint2 changes
633
- X[target_col] = y # new
634
- X[panel_col] = df[panel_col]
635
- X[date_col] = date
636
-
637
- X_train = X.iloc[:8000]
638
- X_test = X.iloc[8000:].reset_index(drop=True)
639
- y_train = y.iloc[:8000]
640
- y_test = y.iloc[8000:].reset_index(drop=True)
641
-
642
- test_spends = spends_data[8000:] # Sprint3 - test spends for resp curves
643
- random_eff_df = get_random_effects(media_data, panel_col, model)
644
- train_pred = model.fittedvalues
645
- test_pred = mdf_predict(X_test, model, random_eff_df)
646
- print("__" * 20, test_pred.isna().sum())
647
-
648
- else :
649
- df = st.session_state['media_data']
650
- X = df[features_set.values[0]]
651
- y = df[target_col]
652
-
653
- ss = MinMaxScaler()
654
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
655
- X = sm.add_constant(X)
656
-
657
- X[date_col] = date
658
-
659
- X_train = X.iloc[:130]
660
- X_test = X.iloc[130:].reset_index(drop=True)
661
- y_train = y.iloc[:130]
662
- y_test = y.iloc[130:].reset_index(drop=True)
663
-
664
- test_spends = spends_data[130:] # Sprint3 - test spends for resp curves
665
- train_pred = model.predict(X_train[features_set.values[0]+['const']])
666
- test_pred = model.predict(X_test[features_set.values[0]+['const']])
667
-
668
-
669
- # save x test to test - srishti
670
- x_test_to_save = X_test.copy()
671
- x_test_to_save['Actuals'] = y_test
672
- x_test_to_save['Predictions'] = test_pred
673
-
674
- x_train_to_save = X_train.copy()
675
- x_train_to_save['Actuals'] = y_train
676
- x_train_to_save['Predictions'] = train_pred
677
-
678
- x_train_to_save.to_csv('Test/x_train_to_save.csv', index=False)
679
- x_test_to_save.to_csv('Test/x_test_to_save.csv', index=False)
680
-
681
- st.session_state['X'] = X_train
682
- st.session_state['features_set'] = features_set.values[0]
683
- print("**" * 20, "selected model features : ", features_set.values[0])
684
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train, train_pred,
685
- model, target_column=sel_target_col,
686
- is_panel=is_panel) # Sprint2
687
-
688
- st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)
689
-
690
- st.markdown('## 2.3 Residual Analysis')
691
- columns = st.columns(2)
692
- with columns[0]:
693
- fig = plot_residual_predicted(y_train, train_pred, X_train) # Sprint2
694
- st.plotly_chart(fig)
695
-
696
- with columns[1]:
697
- st.empty()
698
- fig = qqplot(y_train, train_pred) # Sprint2
699
- st.plotly_chart(fig)
700
-
701
- with columns[0]:
702
- fig = residual_distribution(y_train, train_pred) # Sprint2
703
- st.pyplot(fig)
704
-
705
- vif_data = pd.DataFrame()
706
- # X=X.drop('const',axis=1)
707
- X_train_orig = X_train.copy() # Sprint2 -- creating a copy of xtrain. Later deleting panel, target & date from xtrain
708
- del_col_list = list(set([target_col, panel_col, date_col]).intersection(list(X_train.columns)))
709
- X_train.drop(columns=del_col_list, inplace=True) # Sprint2
710
-
711
- vif_data["Variable"] = X_train.columns
712
- vif_data["VIF"] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
713
- vif_data.sort_values(by=['VIF'], ascending=False, inplace=True)
714
- vif_data = np.round(vif_data)
715
- vif_data['VIF'] = vif_data['VIF'].astype(float)
716
- st.header('2.4 Variance Inflation Factor (VIF)')
717
- # st.dataframe(vif_data)
718
- color_mapping = {
719
- 'darkgreen': (vif_data['VIF'] < 3),
720
- 'orange': (vif_data['VIF'] >= 3) & (vif_data['VIF'] <= 10),
721
- 'darkred': (vif_data['VIF'] > 10)
722
- }
723
-
724
- # Create a horizontal bar plot
725
- fig, ax = plt.subplots()
726
- fig.set_figwidth(10) # Adjust the width of the figure as needed
727
-
728
- # Sort the bars by descending VIF values
729
- vif_data = vif_data.sort_values(by='VIF', ascending=False)
730
-
731
- # Iterate through the color mapping and plot bars with corresponding colors
732
- for color, condition in color_mapping.items():
733
- subset = vif_data[condition]
734
- bars = ax.barh(subset["Variable"], subset["VIF"], color=color, label=color)
735
-
736
- # Add text annotations on top of the bars
737
- for bar in bars:
738
- width = bar.get_width()
739
- ax.annotate(f'{width:}', xy=(width, bar.get_y() + bar.get_height() / 2), xytext=(5, 0),
740
- textcoords='offset points', va='center')
741
-
742
- # Customize the plot
743
- ax.set_xlabel('VIF Values')
744
- # ax.set_title('2.4 Variance Inflation Factor (VIF)')
745
- # ax.legend(loc='upper right')
746
-
747
- # Display the plot in Streamlit
748
- st.pyplot(fig)
749
-
750
- with st.expander('Results Summary Test data'):
751
- # ss = MinMaxScaler()
752
- # X_test = pd.DataFrame(ss.fit_transform(X_test), columns=X_test.columns)
753
- st.header('2.2 Actual vs. Predicted Plot')
754
-
755
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_test[date_col], y_test,
756
- test_pred, model,
757
- target_column=sel_target_col,
758
- is_panel=is_panel) # Sprint2
759
-
760
- st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)
761
-
762
- st.markdown('## 2.3 Residual Analysis')
763
- columns = st.columns(2)
764
- with columns[0]:
765
- fig = plot_residual_predicted(y, test_pred, X_test) # Sprint2
766
- st.plotly_chart(fig)
767
-
768
- with columns[1]:
769
- st.empty()
770
- fig = qqplot(y, test_pred) # Sprint2
771
- st.plotly_chart(fig)
772
-
773
- with columns[0]:
774
- fig = residual_distribution(y, test_pred) # Sprint2
775
- st.pyplot(fig)
776
-
777
- value = False
778
- save_button_model = st.checkbox('Save this model to tune', key='build_rc_cb') # , on_click=set_save())
779
-
780
- if save_button_model:
781
- mod_name = st.text_input('Enter model name')
782
- if len(mod_name) > 0:
783
- mod_name = mod_name + "__" + target_col # Sprint4 - adding target col to model name
784
- if is_panel :
785
- pred_train= model.fittedvalues
786
- pred_test= mdf_predict(X_test, model, random_eff_df)
787
- else :
788
- st.session_state['features_set'] = st.session_state['features_set'] + ['const']
789
- pred_train= model.predict(X_train_orig[st.session_state['features_set']])
790
- pred_test= model.predict(X_test[st.session_state['features_set']])
791
-
792
- st.session_state['Model'][mod_name] = {"Model_object": model,
793
- 'feature_set': st.session_state['features_set'],
794
- 'X_train': X_train_orig,
795
- 'X_test': X_test,
796
- 'y_train': y_train,
797
- 'y_test': y_test,
798
- 'pred_train':pred_train,
799
- 'pred_test': pred_test
800
- }
801
- st.session_state['X_train'] = X_train_orig
802
- # st.session_state['X_test'] = X_test
803
- # st.session_state['y_train'] = y_train
804
- # st.session_state['y_test'] = y_test
805
- st.session_state['X_test_spends'] = test_spends
806
- # st.session_state['base_model'] = model
807
- # st.session_state['base_model_feature_set'] = st.session_state['features_set']
808
- st.session_state['saved_model_names'].append(mod_name)
809
- # Sprint3 additions
810
- if is_panel :
811
- random_eff_df = get_random_effects(media_data, panel_col, model)
812
- st.session_state['random_effects'] = random_eff_df
813
-
814
- # st.session_state['pred_train'] = model.fittedvalues
815
- # st.session_state['pred_test'] = mdf_predict(X_test, model, random_eff_df)
816
- # # End of Sprint3 additions
817
-
818
- with open("best_models.pkl", "wb") as f:
819
- pickle.dump(st.session_state['Model'], f)
820
- st.success(mod_name + ' model saved! Proceed to the next page to tune the model')
821
- urm = st.session_state['used_response_metrics']
822
- urm.append(sel_target_col)
823
- st.session_state['used_response_metrics'] = list(set(urm))
824
- mod_name = ""
825
- # Sprint4 - add the formatted name of the target col to used resp metrics
826
- value = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/4_Saved_Model_Results.py DELETED
@@ -1,413 +0,0 @@
1
- import plotly.express as px
2
- import numpy as np
3
- import plotly.graph_objects as go
4
- import streamlit as st
5
- import pandas as pd
6
- import statsmodels.api as sm
7
- from sklearn.metrics import mean_absolute_percentage_error
8
- import sys
9
- import os
10
- from utilities import (set_header,
11
- load_local_css,
12
- load_authenticator)
13
- import seaborn as sns
14
- import matplotlib.pyplot as plt
15
- import sweetviz as sv
16
- import tempfile
17
- from sklearn.preprocessing import MinMaxScaler
18
- from st_aggrid import AgGrid
19
- from st_aggrid import GridOptionsBuilder,GridUpdateMode
20
- from st_aggrid import GridOptionsBuilder
21
- import sys
22
- import re
23
-
24
- sys.setrecursionlimit(10**6)
25
-
26
- original_stdout = sys.stdout
27
- sys.stdout = open('temp_stdout.txt', 'w')
28
- sys.stdout.close()
29
- sys.stdout = original_stdout
30
-
31
- st.set_page_config(layout='wide')
32
- load_local_css('styles.css')
33
- set_header()
34
-
35
- for k, v in st.session_state.items():
36
- if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
37
- st.session_state[k] = v
38
-
39
- authenticator = st.session_state.get('authenticator')
40
- if authenticator is None:
41
- authenticator = load_authenticator()
42
-
43
- name, authentication_status, username = authenticator.login('Login', 'main')
44
- auth_status = st.session_state.get('authentication_status')
45
-
46
- if auth_status == True:
47
- is_state_initiaized = st.session_state.get('initialized',False)
48
- if not is_state_initiaized:
49
- a=1
50
-
51
-
52
- def plot_residual_predicted(actual, predicted, df_):
53
- df_['Residuals'] = actual - pd.Series(predicted)
54
- df_['StdResidual'] = (df_['Residuals'] - df_['Residuals'].mean()) / df_['Residuals'].std()
55
-
56
- # Create a Plotly scatter plot
57
- fig = px.scatter(df_, x=predicted, y='StdResidual', opacity=0.5,color_discrete_sequence=["#11B6BD"])
58
-
59
- # Add horizontal lines
60
- fig.add_hline(y=0, line_dash="dash", line_color="darkorange")
61
- fig.add_hline(y=2, line_color="red")
62
- fig.add_hline(y=-2, line_color="red")
63
-
64
- fig.update_xaxes(title='Predicted')
65
- fig.update_yaxes(title='Standardized Residuals (Actual - Predicted)')
66
-
67
- # Set the same width and height for both figures
68
- fig.update_layout(title='Residuals over Predicted Values', autosize=False, width=600, height=400)
69
-
70
- return fig
71
-
72
- def residual_distribution(actual, predicted):
73
- Residuals = actual - pd.Series(predicted)
74
-
75
- # Create a Seaborn distribution plot
76
- sns.set(style="whitegrid")
77
- plt.figure(figsize=(6, 4))
78
- sns.histplot(Residuals, kde=True, color="#11B6BD")
79
-
80
- plt.title(' Distribution of Residuals')
81
- plt.xlabel('Residuals')
82
- plt.ylabel('Probability Density')
83
-
84
- return plt
85
-
86
-
87
- def qqplot(actual, predicted):
88
- Residuals = actual - pd.Series(predicted)
89
- Residuals = pd.Series(Residuals)
90
- Resud_std = (Residuals - Residuals.mean()) / Residuals.std()
91
-
92
- # Create a QQ plot using Plotly with custom colors
93
- fig = go.Figure()
94
- fig.add_trace(go.Scatter(x=sm.ProbPlot(Resud_std).theoretical_quantiles,
95
- y=sm.ProbPlot(Resud_std).sample_quantiles,
96
- mode='markers',
97
- marker=dict(size=5, color="#11B6BD"),
98
- name='QQ Plot'))
99
-
100
- # Add the 45-degree reference line
101
- diagonal_line = go.Scatter(
102
- x=[-2, 2], # Adjust the x values as needed to fit the range of your data
103
- y=[-2, 2], # Adjust the y values accordingly
104
- mode='lines',
105
- line=dict(color='red'), # Customize the line color and style
106
- name=' '
107
- )
108
- fig.add_trace(diagonal_line)
109
-
110
- # Customize the layout
111
- fig.update_layout(title='QQ Plot of Residuals',title_x=0.5, autosize=False, width=600, height=400,
112
- xaxis_title='Theoretical Quantiles', yaxis_title='Sample Quantiles')
113
-
114
- return fig
115
-
116
-
117
- def plot_actual_vs_predicted(date, y, predicted_values, model):
118
-
119
- fig = go.Figure()
120
-
121
- fig.add_trace(go.Scatter(x=date, y=y, mode='lines', name='Actual', line=dict(color='blue')))
122
- fig.add_trace(go.Scatter(x=date, y=predicted_values, mode='lines', name='Predicted', line=dict(color='orange')))
123
-
124
- # Calculate MAPE
125
- mape = mean_absolute_percentage_error(y, predicted_values)*100
126
-
127
- # Calculate R-squared
128
- rss = np.sum((y - predicted_values) ** 2)
129
- tss = np.sum((y - np.mean(y)) ** 2)
130
- r_squared = 1 - (rss / tss)
131
-
132
- # Get the number of predictors
133
- num_predictors = model.df_model
134
-
135
- # Get the number of samples
136
- num_samples = len(y)
137
-
138
- # Calculate Adjusted R-squared
139
- adj_r_squared = 1 - ((1 - r_squared) * ((num_samples - 1) / (num_samples - num_predictors - 1)))
140
- metrics_table = pd.DataFrame({
141
- 'Metric': ['MAPE', 'R-squared', 'AdjR-squared'],
142
- 'Value': [mape, r_squared, adj_r_squared]})
143
- fig.update_layout(
144
- xaxis=dict(title='Date'),
145
- yaxis=dict(title='Value'),
146
- title=f'MAPE : {mape:.2f}%, AdjR2: {adj_r_squared:.2f}',
147
- xaxis_tickangle=-30
148
- )
149
-
150
- return metrics_table,fig
151
- def contributions(X, model):
152
- X1 = X.copy()
153
- for j, col in enumerate(X1.columns):
154
- X1[col] = X1[col] * model.params.values[j]
155
-
156
- return np.round((X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2)
157
-
158
- transformed_data=pd.read_csv('transformed_data.csv')
159
-
160
- # hard coded for now, need to get features set from model
161
-
162
- feature_set_dct={'app_installs_-_appsflyer':['paid_search_clicks',
163
- 'fb:_level_achieved_-_tier_1_impressions_lag2',
164
- 'fb:_level_achieved_-_tier_2_clicks_lag2',
165
- 'paid_social_others_impressions_adst.1',
166
- 'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag2',
167
- 'digital_tactic_others_clicks',
168
- 'kwai_clicks_adst.3',
169
- 'programmaticclicks',
170
- 'indicacao_clicks_adst.1',
171
- 'infleux_clicks_adst.4',
172
- 'influencer_clicks'],
173
-
174
- 'account_requests_-_appsflyer':['paid_search_impressions',
175
- 'fb:_level_achieved_-_tier_1_clicks_adst.1',
176
- 'fb:_level_achieved_-_tier_2_clicks_adst.1',
177
- 'paid_social_others_clicks_lag2',
178
- 'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag5_adst.1',
179
- 'digital_tactic_others_clicks_adst.1',
180
- 'kwai_clicks_adst.2',
181
- 'programmaticimpressions_lag4_adst.1',
182
- 'indicacao_clicks',
183
- 'infleux_clicks_adst.2',
184
- 'influencer_clicks'],
185
-
186
- 'total_approved_accounts_-_appsflyer':['paid_search_clicks',
187
- 'fb:_level_achieved_-_tier_1_impressions_lag2_adst.1',
188
- 'fb:_level_achieved_-_tier_2_impressions_lag2',
189
- 'paid_social_others_clicks_lag2_adst.2',
190
- 'ga_app:_will_and_cid_pequena_baixo_risco_impressions_lag4',
191
- 'digital_tactic_others_clicks',
192
- 'kwai_impressions_adst.2',
193
- 'programmaticclicks_adst.5',
194
- 'indicacao_clicks_adst.1',
195
- 'infleux_clicks_adst.3',
196
- 'influencer_clicks'],
197
-
198
- 'total_approved_accounts_-_revenue':['paid_search_impressions_adst.5',
199
- 'kwai_impressions_lag2_adst.3',
200
- 'indicacao_clicks_adst.3',
201
- 'infleux_clicks_adst.3',
202
- 'programmaticclicks_adst.4',
203
- 'influencer_clicks_adst.3',
204
- 'fb:_level_achieved_-_tier_1_impressions_adst.2',
205
- 'fb:_level_achieved_-_tier_2_impressions_lag3_adst.5',
206
- 'paid_social_others_impressions_adst.3',
207
- 'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag3_adst.5',
208
- 'digital_tactic_others_clicks_adst.2']
209
-
210
- }
211
-
212
- #""" the above part should be modified so that we are fetching features set from the saved model"""
213
-
214
-
215
-
216
- def contributions(X, model,target):
217
- X1 = X.copy()
218
- for j, col in enumerate(X1.columns):
219
- X1[col] = X1[col] * model.params.values[j]
220
-
221
- contributions= np.round((X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2)
222
- contributions=pd.DataFrame(contributions,columns=target).reset_index().rename(columns={'index':'Channel'})
223
- contributions['Channel']=[ re.split(r'_imp|_cli', col)[0] for col in contributions['Channel']]
224
-
225
- return contributions
226
-
227
-
228
- def model_fit(features_set,target):
229
- X = transformed_data[features_set]
230
- y= transformed_data[target]
231
- ss = MinMaxScaler()
232
- X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
233
- X = sm.add_constant(X)
234
- X_train=X.iloc[:150]
235
- X_test=X.iloc[150:]
236
- y_train=y.iloc[:150]
237
- y_test=y.iloc[150:]
238
- model = sm.OLS(y_train, X_train).fit()
239
- predicted_values_train = model.predict(X_train)
240
- r2 = model.rsquared
241
- adjr2 = model.rsquared_adj
242
- train_mape = mean_absolute_percentage_error(y_train, predicted_values_train)
243
- test_mape=mean_absolute_percentage_error(y_test, model.predict(X_test))
244
- summary=model.summary()
245
- train_contributions=contributions(X_train,model,[target])
246
- return pd.DataFrame({'Model':target,'R2':np.round(r2,2),'ADJr2':np.round(adjr2,2),'Train Mape':np.round(train_mape,2),
247
- 'Test Mape':np.round(test_mape,2),'Summary':summary,'Model_object':model
248
- },index=[0]), train_contributions
249
-
250
- metrics_table=pd.DataFrame()
251
-
252
- if 'contribution_df' not in st.session_state:
253
- st.session_state["contribution_df"]=pd.DataFrame()
254
-
255
- for target,feature_set in feature_set_dct.items():
256
- metrics_table= pd.concat([metrics_table,model_fit(features_set=feature_set,target=target)[0]])
257
- if st.session_state["contribution_df"].empty:
258
- st.session_state["contribution_df"]= model_fit(features_set=feature_set,target=target)[1]
259
- else:
260
- st.session_state["contribution_df"]=pd.merge(st.session_state["contribution_df"],model_fit(features_set=feature_set,target=target)[1])
261
-
262
- # st.write(st.session_state["contribution_df"])
263
-
264
-
265
- metrics_table.reset_index(drop=True,inplace=True)
266
-
267
-
268
-
269
-
270
-
271
-
272
-
273
-
274
- eda_columns=st.columns(2)
275
- with eda_columns[1]:
276
- eda=st.button('Generate EDA Report',help="Click to generate a bivariate report for the selected response metric from the table below.")
277
-
278
-
279
-
280
- # st.markdown('Model Metrics')
281
-
282
- st.title('Contribution Overview')
283
-
284
- contribution_selections=st.multiselect('Select the models to compare contributions',[col for col in st.session_state['contribution_df'].columns if col.lower() != 'channel' ],default=[col for col in st.session_state['contribution_df'].columns if col.lower() != 'channel' ][-1])
285
- trace_data=[]
286
-
287
- for selection in contribution_selections:
288
-
289
- trace=go.Bar(x=st.session_state['contribution_df']['Channel'], y=st.session_state['contribution_df'][selection],name=selection,text=np.round(st.session_state['contribution_df'][selection],0).astype(int).astype(str)+'%',textposition='outside')
290
- trace_data.append(trace)
291
-
292
- layout = go.Layout(
293
- title='Metrics Contribution by Channel',
294
- xaxis=dict(title='Channel Name'),
295
- yaxis=dict(title='Metrics Contribution'),
296
- barmode='group'
297
- )
298
- fig = go.Figure(data=trace_data, layout=layout)
299
- st.plotly_chart(fig,use_container_width=True)
300
-
301
- st.title('Analysis of Models Result')
302
- #st.markdown()
303
- gd_table=metrics_table.iloc[:,:-2]
304
- gd=GridOptionsBuilder.from_dataframe(gd_table)
305
- #gd.configure_pagination(enabled=True)
306
- gd.configure_selection(use_checkbox=True)
307
-
308
-
309
- gridoptions=gd.build()
310
- table = AgGrid(gd_table,gridOptions=gridoptions,fit_columns_on_grid_load=True,height=200)
311
- # table=metrics_table.iloc[:,:-2]
312
- # table.insert(0, "Select", False)
313
- # selection_table=st.data_editor(table,column_config={"Select": st.column_config.CheckboxColumn(required=True)})
314
-
315
-
316
-
317
- if len(table.selected_rows)==0:
318
- st.warning("Click on the checkbox to view comprehensive results of the selected model.")
319
- st.stop()
320
- else:
321
- target_column=table.selected_rows[0]['Model']
322
- feature_set=feature_set_dct[target_column]
323
-
324
- with eda_columns[1]:
325
- if eda:
326
- def generate_report_with_target(channel_data, target_feature):
327
- report = sv.analyze([channel_data, "Dataset"], target_feat=target_feature,verbose=False)
328
- temp_dir = tempfile.mkdtemp()
329
- report_path = os.path.join(temp_dir, "report.html")
330
- report.show_html(filepath=report_path, open_browser=False) # Generate the report as an HTML file
331
- return report_path
332
-
333
- report_data=transformed_data[feature_set]
334
- report_data[target_column]=transformed_data[target_column]
335
- report_file = generate_report_with_target(report_data, target_column)
336
-
337
- if os.path.exists(report_file):
338
- with open(report_file, 'rb') as f:
339
- st.download_button(
340
- label="Download EDA Report",
341
- data=f.read(),
342
- file_name="report.html",
343
- mime="text/html"
344
- )
345
- else:
346
- st.warning("Report generation failed. Unable to find the report file.")
347
-
348
-
349
-
350
- model=metrics_table[metrics_table['Model']==target_column]['Model_object'].iloc[0]
351
- st.header('Model Summary')
352
- st.write(model.summary())
353
- X=transformed_data[feature_set]
354
- ss=MinMaxScaler()
355
- X=pd.DataFrame(ss.fit_transform(X),columns=X.columns)
356
- X=sm.add_constant(X)
357
- y=transformed_data[target_column]
358
- X_train=X.iloc[:150]
359
- X_test=X.iloc[150:]
360
- y_train=y.iloc[:150]
361
- y_test=y.iloc[150:]
362
- X.index=transformed_data['date']
363
- y.index=transformed_data['date']
364
-
365
- metrics_table_train,fig_train= plot_actual_vs_predicted(X_train.index, y_train, model.predict(X_train), model)
366
- metrics_table_test,fig_test= plot_actual_vs_predicted(X_test.index, y_test, model.predict(X_test), model)
367
-
368
- metrics_table_train=metrics_table_train.set_index('Metric').transpose()
369
- metrics_table_train.index=['Train']
370
- metrics_table_test=metrics_table_test.set_index('Metric').transpose()
371
- metrics_table_test.index=['test']
372
- metrics_table=np.round(pd.concat([metrics_table_train,metrics_table_test]),2)
373
-
374
- st.markdown('Result Overview')
375
- st.dataframe(np.round(metrics_table,2),use_container_width=True)
376
-
377
- st.subheader('Actual vs Predicted Plot Train')
378
-
379
- st.plotly_chart(fig_train,use_container_width=True)
380
- st.subheader('Actual vs Predicted Plot Test')
381
- st.plotly_chart(fig_test,use_container_width=True)
382
-
383
- st.markdown('## Residual Analysis')
384
- columns=st.columns(2)
385
-
386
-
387
- Xtrain1=X_train.copy()
388
- with columns[0]:
389
- fig=plot_residual_predicted(y_train,model.predict(Xtrain1),Xtrain1)
390
- st.plotly_chart(fig)
391
-
392
- with columns[1]:
393
- st.empty()
394
- fig = qqplot(y_train,model.predict(X_train))
395
- st.plotly_chart(fig)
396
-
397
- with columns[0]:
398
- fig=residual_distribution(y_train,model.predict(X_train))
399
- st.pyplot(fig)
400
-
401
-
402
-
403
- elif auth_status == False:
404
- st.error('Username/Password is incorrect')
405
- try:
406
- username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
407
- if username_forgot_pw:
408
- st.success('New password sent securely')
409
- # Random password to be transferred to the user securely
410
- elif username_forgot_pw == False:
411
- st.error('Username not found')
412
- except Exception as e:
413
- st.error(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/5_Model_Result_Overview.py DELETED
@@ -1,103 +0,0 @@
1
- import streamlit as st
2
- from utilities import (set_header,
3
- initialize_data,
4
- load_local_css,
5
- create_channel_summary,
6
- create_contribution_pie,
7
- create_contribuion_stacked_plot,
8
- create_channel_spends_sales_plot,
9
- format_numbers,
10
- channel_name_formating,
11
- load_authenticator)
12
- import plotly.graph_objects as go
13
- import streamlit_authenticator as stauth
14
- import yaml
15
- from yaml import SafeLoader
16
- import time
17
-
18
- st.set_page_config(layout='wide')
19
- load_local_css('styles.css')
20
- set_header()
21
-
22
- target='Revenue'
23
- # for k, v in st.session_state.items():
24
-
25
- # if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
26
- # st.session_state[k] = v
27
-
28
- # authenticator = st.session_state.get('authenticator')
29
-
30
- # if authenticator is None:
31
- # authenticator = load_authenticator()
32
-
33
- # name, authentication_status, username = authenticator.login('Login', 'main')
34
- # auth_status = st.session_state['authentication_status']
35
-
36
- # if auth_status:
37
- # authenticator.logout('Logout', 'main')
38
-
39
- # is_state_initiaized = st.session_state.get('initialized',False)
40
- # if not is_state_initiaized:
41
- initialize_data()
42
- scenario = st.session_state['scenario']
43
- raw_df = st.session_state['raw_df']
44
- st.header('Overview of previous spends')
45
-
46
-
47
- columns = st.columns((1,1,3))
48
-
49
- with columns[0]:
50
- st.metric(label = 'Spends', value=format_numbers(float(scenario.actual_total_spends)))
51
- ###print(f"##################### {scenario.actual_total_sales} ##################")
52
- with columns[1]:
53
- st.metric(label = target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
54
-
55
-
56
- actual_summary_df = create_channel_summary(scenario)
57
- actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
58
-
59
- columns = st.columns((2,1))
60
- with columns[0]:
61
- with st.expander('Channel wise overview'):
62
- st.markdown(actual_summary_df.style.set_table_styles(
63
- [{
64
- 'selector': 'th',
65
- 'props': [('background-color', '#11B6BD')]
66
- },
67
- {
68
- 'selector' : 'tr:nth-child(even)',
69
- 'props' : [('background-color', '#11B6BD')]
70
- }]).to_html(), unsafe_allow_html=True)
71
-
72
- st.markdown("<hr>",unsafe_allow_html=True)
73
- ##############################
74
-
75
- st.plotly_chart(create_contribution_pie(),use_container_width=True)
76
- st.markdown("<hr>",unsafe_allow_html=True)
77
-
78
-
79
- ################################3
80
- st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
81
- st.markdown("<hr>",unsafe_allow_html=True)
82
- #######################################
83
-
84
- selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
85
- selected_channel = scenario.channels.get(selected_channel_name,None)
86
-
87
- st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
88
-
89
- st.markdown("<hr>",unsafe_allow_html=True)
90
-
91
- # elif auth_status == False:
92
- # st.error('Username/Password is incorrect')
93
-
94
- # if auth_status != True:
95
- # try:
96
- # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
97
- # if username_forgot_pw:
98
- # st.success('New password sent securely')
99
- # # Random password to be transferred to user securely
100
- # elif username_forgot_pw == False:
101
- # st.error('Username not found')
102
- # except Exception as e:
103
- # st.error(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/5_Model_Tuning_with_panel.py DELETED
@@ -1,527 +0,0 @@
1
- '''
2
- MMO Build Sprint 3
3
- date :
4
- changes : capability to tune MixedLM as well as simple LR in the same page
5
- '''
6
-
7
- import streamlit as st
8
- import pandas as pd
9
- from Eda_functions import format_numbers
10
- import pickle
11
- from utilities import set_header, load_local_css
12
- import statsmodels.api as sm
13
- import re
14
- from sklearn.preprocessing import MinMaxScaler
15
- import matplotlib.pyplot as plt
16
- from statsmodels.stats.outliers_influence import variance_inflation_factor
17
-
18
- st.set_option('deprecation.showPyplotGlobalUse', False)
19
- import statsmodels.formula.api as smf
20
- from Data_prep_functions import *
21
-
22
- # for i in ["model_tuned", "X_train_tuned", "X_test_tuned", "tuned_model_features", "tuned_model", "tuned_model_dict"] :
23
-
24
- st.set_page_config(
25
- page_title="Model Tuning",
26
- page_icon=":shark:",
27
- layout="wide",
28
- initial_sidebar_state='collapsed'
29
- )
30
- load_local_css('styles.css')
31
- set_header()
32
-
33
- # Sprint3
34
- # is_panel = st.session_state['is_panel']
35
- # panel_col = 'markets' # set the panel column
36
- date_col = 'date'
37
-
38
- panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
39
- is_panel = True if len(panel_col)>0 else False
40
-
41
-
42
- # flag indicating there is not tuned model till now
43
-
44
- # Sprint4 - model tuned dict
45
- if 'Model_Tuned' not in st.session_state:
46
- st.session_state['Model_Tuned'] = {}
47
-
48
- st.title('1. Model Tuning')
49
- # st.write(st.session_state['base_model_feature_set'])
50
-
51
- if "X_train" not in st.session_state:
52
- st.error(
53
- "Oops! It seems there are no saved models available. Please build and save a model from the previous page to proceed.")
54
- st.stop()
55
- # X_train=st.session_state['X_train']
56
- # X_test=st.session_state['X_test']
57
- # y_train=st.session_state['y_train']
58
- # y_test=st.session_state['y_test']
59
- # df=st.session_state['media_data']
60
-
61
-
62
- # st.write(X_train.columns)
63
- # st.write(X_test.columns)
64
- if "is_tuned_model" not in st.session_state:
65
- st.session_state["is_tuned_model"] = {}
66
- # Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
67
- if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics'] != []:
68
- sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
69
- target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
70
-
71
- else:
72
- sel_target_col = 'Total Approved Accounts - Revenue'
73
- target_col = 'total_approved_accounts_revenue'
74
-
75
- # Sprint4 - Look through all saved models, only show saved models of the sel resp metric (target_col)
76
- saved_models = st.session_state['saved_model_names']
77
- required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
78
- sel_model = st.selectbox("Select the model to tune", required_saved_models)
79
-
80
- with open("best_models.pkl", 'rb') as file:
81
- model_dict = pickle.load(file)
82
-
83
- sel_model_dict = model_dict[sel_model + "__" + target_col] # Sprint4 - get the model obj of the selected model
84
- # st.write(sel_model_dict)
85
-
86
- X_train = sel_model_dict['X_train']
87
- X_test = sel_model_dict['X_test']
88
- y_train = sel_model_dict['y_train']
89
- y_test = sel_model_dict['y_test']
90
- df = st.session_state['media_data']
91
-
92
- if 'selected_model' not in st.session_state:
93
- st.session_state['selected_model'] = 0
94
-
95
- # st.write(model_dict[st.session_state["selected_model"]]['X_train'].columns)
96
-
97
- st.markdown('### 1.1 Event Flags')
98
- st.markdown('Helps in quantifying the impact of specific occurrences of events')
99
- with st.expander('Apply Event Flags'):
100
- # st.session_state["selected_model"]=st.selectbox('Select Model to apply flags',model_dict.keys())
101
- model = sel_model_dict['Model_object']
102
- date = st.session_state['date']
103
- date = pd.to_datetime(date)
104
- X_train = sel_model_dict['X_train']
105
-
106
- # features_set= model_dict[st.session_state["selected_model"]]['feature_set']
107
- features_set = sel_model_dict["feature_set"]
108
-
109
- col = st.columns(3)
110
- min_date = min(date)
111
- max_date = max(date)
112
- with col[0]:
113
- start_date = st.date_input('Select Start Date', min_date, min_value=min_date, max_value=max_date)
114
- with col[1]:
115
- end_date = st.date_input('Select End Date', max_date, min_value=min_date, max_value=max_date)
116
- with col[2]:
117
- repeat = st.selectbox('Repeat Annually', ['Yes', 'No'], index=1)
118
- if repeat == 'Yes':
119
- repeat = True
120
- else:
121
- repeat = False
122
-
123
- if 'Flags' not in st.session_state:
124
- st.session_state['Flags'] = {}
125
- # print("**"*50)
126
- # print(y_train)
127
- # print("**"*50)
128
- # print(model.fittedvalues)
129
- if is_panel: # Sprint3
130
- met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train,
131
- model.fittedvalues, model,
132
- target_column=sel_target_col,
133
- flag=(start_date, end_date),
134
- repeat_all_years=repeat, is_panel=True)
135
- st.plotly_chart(fig_flag, use_container_width=True)
136
-
137
- # create flag on test
138
- met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test,
139
- sel_model_dict['pred_test'], model,
140
- target_column=sel_target_col,
141
- flag=(start_date, end_date),
142
- repeat_all_years=repeat, is_panel=True)
143
-
144
- else:
145
- pred_train=model.predict(X_train[features_set])
146
- met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train, pred_train, model,
147
- flag=(start_date, end_date), repeat_all_years=repeat,is_panel=False)
148
- st.plotly_chart(fig_flag, use_container_width=True)
149
-
150
- pred_test=model.predict(X_test[features_set])
151
- met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test, pred_test, model,
152
- flag=(start_date, end_date), repeat_all_years=repeat,is_panel=False)
153
- flag_name = 'f1_flag'
154
- flag_name = st.text_input('Enter Flag Name')
155
- # Sprint4 - add selected target col to flag name
156
- if st.button('Update flag'):
157
- st.session_state['Flags'][flag_name + '__'+ target_col] = {}
158
- st.session_state['Flags'][flag_name + '__'+ target_col]['train'] = line_values
159
- st.session_state['Flags'][flag_name + '__'+ target_col]['test'] = test_line_values
160
- # st.write(st.session_state['Flags'][flag_name])
161
- st.success(f'{flag_name + "__" + target_col} stored')
162
-
163
- # Sprint4 - only show flag created for the particular target col
164
- st.write(st.session_state['Flags'].keys() )
165
- target_model_flags = [f.split("__")[0] for f in st.session_state['Flags'].keys() if f.split("__")[1] == target_col]
166
- options = list(target_model_flags)
167
- selected_options = []
168
- num_columns = 4
169
- num_rows = -(-len(options) // num_columns)
170
-
171
- tick = False
172
- if st.checkbox('Select all'):
173
- tick = True
174
- selected_options = []
175
- for row in range(num_rows):
176
- cols = st.columns(num_columns)
177
- for col in cols:
178
- if options:
179
- option = options.pop(0)
180
- selected = col.checkbox(option, value=tick)
181
- if selected:
182
- selected_options.append(option)
183
-
184
- st.markdown('### 1.2 Select Parameters to Apply')
185
- parameters = st.columns(3)
186
- with parameters[0]:
187
- Trend = st.checkbox("**Trend**")
188
- st.markdown('Helps account for long-term trends or seasonality that could influence advertising effectiveness')
189
- with parameters[1]:
190
- week_number = st.checkbox('**Week_number**')
191
- st.markdown('Assists in detecting and incorporating weekly patterns or seasonality')
192
- with parameters[2]:
193
- sine_cosine = st.checkbox('**Sine and Cosine Waves**')
194
- st.markdown('Helps in capturing cyclical patterns or seasonality in the data')
195
- #
196
- # def get_tuned_model():
197
- # st.session_state['build_tuned_model']=True
198
-
199
- if st.button('Build model with Selected Parameters and Flags', key='build_tuned_model'):
200
- new_features = features_set
201
- st.header('2.1 Results Summary')
202
- # date=list(df.index)
203
- # df = df.reset_index(drop=True)
204
- # st.write(df.head(2))
205
- # X_train=df[features_set]
206
- ss = MinMaxScaler()
207
- if is_panel == True:
208
- X_train_tuned = X_train[features_set]
209
- # X_train_tuned = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
210
- X_train_tuned[target_col] = X_train[target_col]
211
- X_train_tuned[date_col] = X_train[date_col]
212
- X_train_tuned[panel_col] = X_train[panel_col]
213
-
214
- X_test_tuned = X_test[features_set]
215
- # X_test_tuned = pd.DataFrame(ss.transform(X), columns=X.columns)
216
- X_test_tuned[target_col] = X_test[target_col]
217
- X_test_tuned[date_col] = X_test[date_col]
218
- X_test_tuned[panel_col] = X_test[panel_col]
219
-
220
- else:
221
- X_train_tuned = X_train[features_set]
222
- # X_train_tuned = pd.DataFrame(ss.fit_transform(X_train_tuned), columns=X_train_tuned.columns)
223
-
224
- X_test_tuned = X_test[features_set]
225
- # X_test_tuned = pd.DataFrame(ss.transform(X_test_tuned), columns=X_test_tuned.columns)
226
-
227
- for flag in selected_options:
228
- # Spirnt4 - added target_col in flag name
229
- X_train_tuned[flag] = st.session_state['Flags'][flag + "__" + target_col]['train']
230
- X_test_tuned[flag] = st.session_state['Flags'][flag + "__" + target_col]['test']
231
-
232
- # test
233
- # X_train_tuned.to_csv("Test/X_train_tuned_flag.csv",index=False)
234
- # X_test_tuned.to_csv("Test/X_test_tuned_flag.csv",index=False)
235
-
236
- # print("()()"*20,flag, len(st.session_state['Flags'][flag]))
237
- if Trend:
238
- # Sprint3 - group by panel, calculate trend of each panel spearately. Add trend to new feature set
239
- if is_panel:
240
- newdata = pd.DataFrame()
241
- panel_wise_end_point_train = {}
242
- for panel, groupdf in X_train_tuned.groupby(panel_col):
243
- groupdf.sort_values(date_col, inplace=True)
244
- groupdf['Trend'] = np.arange(1, len(groupdf) + 1, 1)
245
- newdata = pd.concat([newdata, groupdf])
246
- panel_wise_end_point_train[panel] = len(groupdf)
247
- X_train_tuned = newdata.copy()
248
-
249
- test_newdata = pd.DataFrame()
250
- for panel, test_groupdf in X_test_tuned.groupby(panel_col):
251
- test_groupdf.sort_values(date_col, inplace=True)
252
- start = panel_wise_end_point_train[panel] + 1
253
- end = start + len(test_groupdf) # should be + 1? - Sprint4
254
- # print("??"*20, panel, len(test_groupdf), len(np.arange(start, end, 1)), start)
255
- test_groupdf['Trend'] = np.arange(start, end, 1)
256
- test_newdata = pd.concat([test_newdata, test_groupdf])
257
- X_test_tuned = test_newdata.copy()
258
-
259
- new_features = new_features + ['Trend']
260
-
261
- else:
262
- X_train_tuned['Trend'] = np.arange(1, len(X_train_tuned) + 1, 1)
263
- X_test_tuned['Trend'] = np.arange(len(X_train_tuned) + 1, len(X_train_tuned) + len(X_test_tuned) + 1, 1)
264
- new_features = new_features + ['Trend']
265
-
266
-
267
- if week_number:
268
- # Sprint3 - create weeknumber from date column in xtrain tuned. add week num to new feature set
269
- if is_panel:
270
- X_train_tuned[date_col] = pd.to_datetime(X_train_tuned[date_col])
271
- X_train_tuned['Week_number'] = X_train_tuned[date_col].dt.day_of_week
272
- if X_train_tuned['Week_number'].nunique() == 1:
273
- st.write("All dates in the data are of the same week day. Hence Week number can't be used.")
274
- else:
275
- X_test_tuned[date_col] = pd.to_datetime(X_test_tuned[date_col])
276
- X_test_tuned['Week_number'] = X_test_tuned[date_col].dt.day_of_week
277
- new_features = new_features + ['Week_number']
278
-
279
- else:
280
- date = pd.to_datetime(date.values)
281
- X_train_tuned['Week_number'] = pd.to_datetime(X_train[date_col]).dt.day_of_week
282
- X_test_tuned['Week_number'] = pd.to_datetime(X_test[date_col]).dt.day_of_week
283
- new_features = new_features + ['Week_number']
284
-
285
- if sine_cosine:
286
- # Sprint3 - create panel wise sine cosine waves in xtrain tuned. add to new feature set
287
- if is_panel:
288
- new_features = new_features + ['sine_wave', 'cosine_wave']
289
- newdata = pd.DataFrame()
290
- newdata_test = pd.DataFrame()
291
- groups = X_train_tuned.groupby(panel_col)
292
- frequency = 2 * np.pi / 365 # Adjust the frequency as needed
293
-
294
- train_panel_wise_end_point = {}
295
- for panel, groupdf in groups:
296
- num_samples = len(groupdf)
297
- train_panel_wise_end_point[panel] = num_samples
298
- days_since_start = np.arange(num_samples)
299
- sine_wave = np.sin(frequency * days_since_start)
300
- cosine_wave = np.cos(frequency * days_since_start)
301
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
302
- assert len(sine_cosine_df) == len(groupdf)
303
- # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
304
- groupdf['sine_wave'] = sine_wave
305
- groupdf['cosine_wave'] = cosine_wave
306
- newdata = pd.concat([newdata, groupdf])
307
-
308
- X_train_tuned = newdata.copy()
309
-
310
- test_groups = X_test_tuned.groupby(panel_col)
311
- for panel, test_groupdf in test_groups:
312
- num_samples = len(test_groupdf)
313
- start = train_panel_wise_end_point[panel]
314
- days_since_start = np.arange(start, start + num_samples, 1)
315
- # print("##", panel, num_samples, start, len(np.arange(start, start+num_samples, 1)))
316
- sine_wave = np.sin(frequency * days_since_start)
317
- cosine_wave = np.cos(frequency * days_since_start)
318
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
319
- assert len(sine_cosine_df) == len(test_groupdf)
320
- # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
321
- test_groupdf['sine_wave'] = sine_wave
322
- test_groupdf['cosine_wave'] = cosine_wave
323
- newdata_test = pd.concat([newdata_test, test_groupdf])
324
-
325
- X_test_tuned = newdata_test.copy()
326
-
327
-
328
- else:
329
- new_features = new_features + ['sine_wave', 'cosine_wave']
330
-
331
- num_samples = len(X_train_tuned)
332
- frequency = 2 * np.pi / 365 # Adjust the frequency as needed
333
- days_since_start = np.arange(num_samples)
334
- sine_wave = np.sin(frequency * days_since_start)
335
- cosine_wave = np.cos(frequency * days_since_start)
336
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
337
- # Concatenate the sine and cosine waves with the scaled X DataFrame
338
- X_train_tuned = pd.concat([X_train_tuned, sine_cosine_df], axis=1)
339
-
340
- test_num_samples = len(X_test_tuned)
341
- start = num_samples
342
- days_since_start = np.arange(start, start + test_num_samples, 1)
343
- sine_wave = np.sin(frequency * days_since_start)
344
- cosine_wave = np.cos(frequency * days_since_start)
345
- sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
346
- # Concatenate the sine and cosine waves with the scaled X DataFrame
347
- X_test_tuned = pd.concat([X_test_tuned, sine_cosine_df], axis=1)
348
-
349
- # model
350
- if selected_options:
351
- new_features = new_features + selected_options
352
- if is_panel:
353
- inp_vars_str = " + ".join(new_features)
354
- new_features=list(set(new_features))
355
- # X_train_tuned.to_csv("Test/X_train_tuned.csv",index=False)
356
- # st.write(X_train_tuned[['total_approved_accounts_revenue'] + new_features].dtypes)
357
- # st.write(X_train_tuned[['total_approved_accounts_revenue', panel_col] + new_features].isna().sum())
358
- md_str = target_col + " ~ " + inp_vars_str
359
- md_tuned = smf.mixedlm(md_str,
360
- data=X_train_tuned[[target_col] + new_features],
361
- groups=X_train_tuned[panel_col])
362
- model_tuned = md_tuned.fit()
363
-
364
- # plot act v pred for original model and tuned model
365
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train,
366
- model.fittedvalues, model,
367
- target_column=sel_target_col,
368
- is_panel=True)
369
- metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(X_train_tuned[date_col],
370
- X_train_tuned[target_col],
371
- model_tuned.fittedvalues,
372
- model_tuned,
373
- target_column=sel_target_col,
374
- is_panel=True)
375
-
376
- else:
377
- new_features=list(set(new_features))
378
- # st.write(new_features)
379
- model_tuned = sm.OLS(y_train, X_train_tuned[new_features]).fit()
380
- # st.write(X_train_tuned.columns)
381
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date[:130], y_train,
382
- model.predict(X_train[features_set]), model,
383
- target_column=sel_target_col)
384
- metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(date[:130], y_train,
385
- model_tuned.predict(
386
- X_train_tuned),
387
- model_tuned,
388
- target_column=sel_target_col)
389
-
390
- # st.write(metrics_table_tuned)
391
- mape = np.round(metrics_table.iloc[0, 1], 2)
392
- r2 = np.round(metrics_table.iloc[1, 1], 2)
393
- adjr2 = np.round(metrics_table.iloc[2, 1], 2)
394
-
395
- mape_tuned = np.round(metrics_table_tuned.iloc[0, 1], 2)
396
- r2_tuned = np.round(metrics_table_tuned.iloc[1, 1], 2)
397
- adjr2_tuned = np.round(metrics_table_tuned.iloc[2, 1], 2)
398
-
399
- parameters_ = st.columns(3)
400
- with parameters_[0]:
401
- st.metric('R2', r2_tuned, np.round(r2_tuned - r2, 2))
402
- with parameters_[1]:
403
- st.metric('Adjusted R2', adjr2_tuned, np.round(adjr2_tuned - adjr2, 2))
404
- with parameters_[2]:
405
- st.metric('MAPE', mape_tuned, np.round(mape_tuned - mape, 2), 'inverse')
406
- st.write(model_tuned.summary())
407
-
408
- X_train_tuned[date_col] = X_train[date_col]
409
- X_test_tuned[date_col] = X_test[date_col]
410
- X_train_tuned[target_col] = y_train
411
- X_test_tuned[target_col] = y_test
412
-
413
- st.header('2.2 Actual vs. Predicted Plot')
414
- # if is_panel:
415
- # metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date, y_train, model.predict(X_train),
416
- # model, target_column='Revenue',is_panel=True)
417
- # else:
418
- # metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')
419
- if is_panel :
420
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train_tuned[date_col],
421
- X_train_tuned[target_col],
422
- model_tuned.fittedvalues, model_tuned,
423
- target_column=sel_target_col,
424
- is_panel=True)
425
- else :
426
- metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train_tuned[date_col],
427
- X_train_tuned[target_col],
428
- model_tuned.predict(X_train_tuned[new_features]),
429
- model_tuned,
430
- target_column=sel_target_col,
431
- is_panel=False)
432
- # plot_actual_vs_predicted(X_train[date_col], y_train,
433
- # model.fittedvalues, model,
434
- # target_column='Revenue',
435
- # is_panel=is_panel)
436
-
437
- st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)
438
-
439
- st.markdown('## 2.3 Residual Analysis')
440
- if is_panel :
441
- columns = st.columns(2)
442
- with columns[0]:
443
- fig = plot_residual_predicted(y_train, model_tuned.fittedvalues, X_train_tuned)
444
- st.plotly_chart(fig)
445
-
446
- with columns[1]:
447
- st.empty()
448
- fig = qqplot(y_train, model_tuned.fittedvalues)
449
- st.plotly_chart(fig)
450
-
451
- with columns[0]:
452
- fig = residual_distribution(y_train, model_tuned.fittedvalues)
453
- st.pyplot(fig)
454
- else:
455
- columns = st.columns(2)
456
- with columns[0]:
457
- fig = plot_residual_predicted(y_train, model_tuned.predict(X_train_tuned[new_features]), X_train)
458
- st.plotly_chart(fig)
459
-
460
- with columns[1]:
461
- st.empty()
462
- fig = qqplot(y_train, model_tuned.predict(X_train_tuned[new_features]))
463
- st.plotly_chart(fig)
464
-
465
- with columns[0]:
466
- fig = residual_distribution(y_train, model_tuned.predict(X_train_tuned[new_features]))
467
- st.pyplot(fig)
468
-
469
- st.session_state['is_tuned_model'][target_col] = True
470
- # Sprint4 - saved tuned model in a dict
471
- st.session_state['Model_Tuned'][sel_model + "__" + target_col] = {
472
- "Model_object": model_tuned,
473
- 'feature_set': new_features,
474
- 'X_train_tuned': X_train_tuned,
475
- 'X_test_tuned': X_test_tuned
476
- }
477
-
478
- # Pending
479
- # if st.session_state['build_tuned_model']==True:
480
- if st.session_state['Model_Tuned'] is not None :
481
- if st.checkbox('Use this model to build response curves', key='save_model'):
482
- # save_model = st.button('Use this model to build response curves', key='saved_tuned_model')
483
- # if save_model:
484
- st.session_state["is_tuned_model"][target_col]=True
485
- with open("tuned_model.pkl", "wb") as f:
486
- # pickle.dump(st.session_state['tuned_model'], f)
487
- pickle.dump(st.session_state['Model_Tuned'], f) # Sprint4
488
-
489
- # X_test_tuned.to_csv("Test/X_test_tuned_final.csv", index=False)
490
- # X_train_tuned.to_csv("Test/X_train_tuned.csv", index=False)
491
- st.success(sel_model + "__" + target_col + ' Tuned saved!')
492
-
493
-
494
- # if is_panel:
495
- # # st.session_state["tuned_model_features"] = new_features
496
- # with open("tuned_model.pkl", "wb") as f:
497
- # # pickle.dump(st.session_state['tuned_model'], f)
498
- # pickle.dump(st.session_state['Model_Tuned'], f) # Sprint4
499
- # st.success(sel_model + "__" + target_col + ' Tuned saved!')
500
-
501
- # raw_data=df[features_set]
502
- # columns_raw=[re.split(r"(_lag|_adst)",col)[0] for col in raw_data.columns]
503
- # raw_data.columns=columns_raw
504
- # columns_media=[col for col in columns_raw if Categorised_data[col]['BB']=='Media']
505
- # raw_data=raw_data[columns_media]
506
-
507
- # raw_data['Date']=list(df.index)
508
-
509
- # spends_var=[col for col in df.columns if "spends" in col.lower() and 'adst' not in col.lower() and 'lag' not in col.lower()]
510
- # spends_df=df[spends_var]
511
- # spends_df['Week']=list(df.index)
512
-
513
-
514
- # j=0
515
- # X1=X.copy()
516
- # col=X1.columns
517
- # for i in model.params.values:
518
- # X1[col[j]]=X1.iloc[:,j]*i
519
- # j+=1
520
- # contribution_df=X1
521
- # contribution_df['Date']=list(df.index)
522
- # excel_file='Overview_data.xlsx'
523
-
524
- # with pd.ExcelWriter(excel_file,engine='xlsxwriter') as writer:
525
- # raw_data.to_excel(writer,sheet_name='RAW DATA MMM',index=False)
526
- # spends_df.to_excel(writer,sheet_name='SPEND INPUT',index=False)
527
- # contribution_df.to_excel(writer,sheet_name='CONTRIBUTION MMM')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/6_Build_Response_Curves.py DELETED
@@ -1,168 +0,0 @@
1
- import streamlit as st
2
- import plotly.express as px
3
- import numpy as np
4
- import plotly.graph_objects as go
5
- from utilities import channel_name_formating, load_authenticator, initialize_data
6
- from sklearn.metrics import r2_score
7
- from collections import OrderedDict
8
- from classes import class_from_dict,class_to_dict
9
- import pickle
10
- import json
11
-
12
- for k, v in st.session_state.items():
13
- if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
14
- st.session_state[k] = v
15
-
16
- def s_curve(x,K,b,a,x0):
17
- return K / (1 + b*np.exp(-a*(x-x0)))
18
-
19
- def save_scenario(scenario_name):
20
- """
21
- Save the current scenario with the mentioned name in the session state
22
-
23
- Parameters
24
- ----------
25
- scenario_name
26
- Name of the scenario to be saved
27
- """
28
- if 'saved_scenarios' not in st.session_state:
29
- st.session_state = OrderedDict()
30
-
31
- #st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
32
- st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
33
- st.session_state['scenario_input'] = ""
34
- print(type(st.session_state['saved_scenarios']))
35
- with open('../saved_scenarios.pkl', 'wb') as f:
36
- pickle.dump(st.session_state['saved_scenarios'],f)
37
-
38
-
39
- def reset_curve_parameters():
40
- del st.session_state['K']
41
- del st.session_state['b']
42
- del st.session_state['a']
43
- del st.session_state['x0']
44
-
45
- def update_response_curve():
46
- # st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K']
47
- # st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b']
48
- # st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a']
49
- # st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0']
50
- # rcs = st.session_state['rcs']
51
- _channel_class = st.session_state['scenario'].channels[selected_channel_name]
52
- _channel_class.update_response_curves({
53
- 'K' : st.session_state['K'],
54
- 'b' : st.session_state['b'],
55
- 'a' : st.session_state['a'],
56
- 'x0' : st.session_state['x0']})
57
-
58
-
59
- # authenticator = st.session_state.get('authenticator')
60
- # if authenticator is None:
61
- # authenticator = load_authenticator()
62
-
63
- # name, authentication_status, username = authenticator.login('Login', 'main')
64
- # auth_status = st.session_state.get('authentication_status')
65
-
66
- # if auth_status == True:
67
- # is_state_initiaized = st.session_state.get('initialized',False)
68
- # if not is_state_initiaized:
69
- # print("Scenario page state reloaded")
70
-
71
- initialize_data()
72
-
73
- st.subheader("Build response curves")
74
-
75
- channels_list = st.session_state['channels_list']
76
- selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['Others'], format_func=channel_name_formating,on_change=reset_curve_parameters)
77
-
78
- rcs = {}
79
- for channel_name in channels_list:
80
- rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params
81
- # rcs = st.session_state['rcs']
82
-
83
-
84
- if 'K' not in st.session_state:
85
- st.session_state['K'] = rcs[selected_channel_name]['K']
86
- if 'b' not in st.session_state:
87
- st.session_state['b'] = rcs[selected_channel_name]['b']
88
- if 'a' not in st.session_state:
89
- st.session_state['a'] = rcs[selected_channel_name]['a']
90
- if 'x0' not in st.session_state:
91
- st.session_state['x0'] = rcs[selected_channel_name]['x0']
92
-
93
- x = st.session_state['actual_input_df'][selected_channel_name].values
94
- y = st.session_state['actual_contribution_df'][selected_channel_name].values
95
-
96
- power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
97
-
98
- # fig = px.scatter(x, s_curve(x/10**power,
99
- # st.session_state['K'],
100
- # st.session_state['b'],
101
- # st.session_state['a'],
102
- # st.session_state['x0']))
103
-
104
- fig = px.scatter(x=x, y=y)
105
- fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'],
106
- st.session_state['b'],
107
- st.session_state['a'],
108
- st.session_state['x0']),
109
- line=dict(color='red')))
110
-
111
- fig.update_layout(title_text="Response Curve",showlegend=False)
112
- fig.update_annotations(font_size=10)
113
- fig.update_xaxes(title='Spends')
114
- fig.update_yaxes(title='Revenue')
115
-
116
- st.plotly_chart(fig,use_container_width=True)
117
-
118
- r2 = r2_score(y, s_curve(x / 10**power,
119
- st.session_state['K'],
120
- st.session_state['b'],
121
- st.session_state['a'],
122
- st.session_state['x0']))
123
-
124
- st.metric('R2',round(r2,2))
125
- columns = st.columns(4)
126
-
127
- with columns[0]:
128
- st.number_input('K',key='K',format="%0.5f")
129
- with columns[1]:
130
- st.number_input('b',key='b',format="%0.5f")
131
- with columns[2]:
132
- st.number_input('a',key='a',step=0.0001,format="%0.5f")
133
- with columns[3]:
134
- st.number_input('x0',key='x0',format="%0.5f")
135
-
136
-
137
- st.button('Update parameters',on_click=update_response_curve)
138
- st.button('Reset parameters',on_click=reset_curve_parameters)
139
- scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
140
- st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)
141
-
142
- file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed')
143
- st.download_button(
144
- label="Download response curves",
145
- data=json.dumps(rcs),
146
- file_name=f"{file_name}.json",
147
- mime="application/json",
148
- disabled= len(file_name) == 0,
149
- )
150
-
151
-
152
- def s_curve_derivative(x, K, b, a, x0):
153
- # Derivative of the S-curve function
154
- return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2)
155
-
156
- # Parameters of the S-curve
157
- K = st.session_state['K']
158
- b = st.session_state['b']
159
- a = st.session_state['a']
160
- x0 = st.session_state['x0']
161
-
162
- # Optimized spend value obtained from the tool
163
- optimized_spend = st.number_input('value of x') # Replace this with your optimized spend value
164
-
165
- # Calculate the slope at the optimized spend value
166
- slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0)
167
-
168
- st.write("Slope ", slope_at_optimized_spend)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/6_Model_Result_Overview.py DELETED
@@ -1,348 +0,0 @@
1
- '''
2
- MMO Build Sprint 3
3
- additions : contributions calculated using tuned Mixed LM model
4
- pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
5
-
6
- MMO Build Sprint 4
7
- additions : response metrics selection
8
- pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
9
- '''
10
-
11
- import streamlit as st
12
- import pandas as pd
13
- from sklearn.preprocessing import MinMaxScaler
14
- import pickle
15
-
16
-
17
-
18
- from utilities_with_panel import (set_header,
19
- overview_test_data_prep_panel,
20
- overview_test_data_prep_nonpanel,
21
- initialize_data,
22
- load_local_css,
23
- create_channel_summary,
24
- create_contribution_pie,
25
- create_contribuion_stacked_plot,
26
- create_channel_spends_sales_plot,
27
- format_numbers,
28
- channel_name_formating)
29
-
30
- import plotly.graph_objects as go
31
- import streamlit_authenticator as stauth
32
- import yaml
33
- from yaml import SafeLoader
34
- import time
35
-
36
- st.set_page_config(layout='wide')
37
- load_local_css('styles.css')
38
- set_header()
39
-
40
-
41
- def get_random_effects(media_data, panel_col, mdf):
42
- random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
43
-
44
- for i, market in enumerate(media_data[panel_col].unique()):
45
- print(i, end='\r')
46
- intercept = mdf.random_effects[market].values[0]
47
- random_eff_df.loc[i, 'random_effect'] = intercept
48
- random_eff_df.loc[i, panel_col] = market
49
-
50
- return random_eff_df
51
-
52
-
53
- def process_train_and_test(train, test, features, panel_col, target_col):
54
- X1 = train[features]
55
-
56
- ss = MinMaxScaler()
57
- X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
58
-
59
- X1[panel_col] = train[panel_col]
60
- X1[target_col] = train[target_col]
61
-
62
- if test is not None:
63
- X2 = test[features]
64
- X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
65
- X2[panel_col] = test[panel_col]
66
- X2[target_col] = test[target_col]
67
- return X1, X2
68
- return X1
69
-
70
- def mdf_predict(X_df, mdf, random_eff_df) :
71
- X=X_df.copy()
72
- X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
73
- X['pred_fixed_effect'] = mdf.predict(X)
74
-
75
- X['pred'] = X['pred_fixed_effect'] + X['random_effect']
76
- X.to_csv('Test/merged_df_contri.csv',index=False)
77
- X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
78
-
79
- return X
80
-
81
-
82
- target='Revenue'
83
-
84
- # is_panel=False
85
- # is_panel = st.session_state['is_panel']
86
- panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
87
- date_col = 'date'
88
-
89
- #st.write(media_data)
90
-
91
- is_panel = True if len(panel_col)>0 else False
92
-
93
- # panel_col='markets'
94
- date_col = 'date'
95
-
96
- # Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
97
- if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]:
98
- sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
99
- target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
100
- else :
101
- sel_target_col = 'Total Approved Accounts - Revenue'
102
- target_col = 'total_approved_accounts_revenue'
103
-
104
- # Sprint4 - Look through all saved tuned models, only show saved models of the sel resp metric (target_col)
105
- # saved_models = st.session_state['saved_model_names']
106
- # Sprint4 - get the model obj of the selected model
107
- # st.write(sel_model_dict)
108
-
109
- # Sprint3 - Contribution
110
- if is_panel:
111
- # read tuned mixedLM model
112
- # if st.session_state["tuned_model"] is not None :
113
-
114
- if st.session_state["is_tuned_model"][target_col]==True: #Sprint4
115
- with open("tuned_model.pkl", 'rb') as file:
116
- model_dict = pickle.load(file)
117
- saved_models = list(model_dict.keys())
118
- required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
119
- sel_model = st.selectbox("Select the model to review", required_saved_models)
120
- sel_model_dict = model_dict[sel_model + "__" + target_col]
121
-
122
- # model=st.session_state["tuned_model"]
123
- # X_train=st.session_state["X_train_tuned"]
124
- # X_test=st.session_state["X_test_tuned"]
125
- # best_feature_set=st.session_state["tuned_model_features"]
126
- model=sel_model_dict["Model_object"]
127
- X_train=sel_model_dict["X_train_tuned"]
128
- X_test=sel_model_dict["X_test_tuned"]
129
- best_feature_set=sel_model_dict["feature_set"]
130
-
131
- # st.write("features", best_feature_set)
132
- # st.write(X_test.columns)
133
-
134
- else : # if non tuned model to be used # Pending
135
- with open("best_models.pkl", 'rb') as file:
136
- model_dict = pickle.load(file)
137
- saved_models = list(model_dict.keys())
138
- required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
139
- sel_model = st.selectbox("Select the model to review", required_saved_models)
140
- sel_model_dict = model_dict[sel_model + "__" + target_col]
141
- model=st.session_state["base_model"]
142
- X_train = st.session_state['X_train']
143
- X_test = st.session_state['X_test']
144
- # y_train = st.session_state['y_train']
145
- # y_test = st.session_state['y_test']
146
- best_feature_set = st.session_state['base_model_feature_set']
147
- # st.write(best_feature_set)
148
- # st.write(X_test.columns)
149
-
150
- # Calculate contributions
151
-
152
- with open("data_import.pkl", "rb") as f:
153
- data = pickle.load(f)
154
-
155
- # Accessing the loaded objects
156
- st.session_state['orig_media_data'] = data["final_df"]
157
-
158
- st.session_state['orig_media_data'].columns=[col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['orig_media_data'].columns]
159
-
160
- media_data = st.session_state["media_data"]
161
-
162
-
163
- # st.session_state['orig_media_data']=st.session_state["media_data"]
164
-
165
- #st.write(media_data)
166
-
167
- contri_df = pd.DataFrame()
168
-
169
- y = []
170
- y_pred = []
171
-
172
- random_eff_df = get_random_effects(media_data, panel_col, model)
173
- random_eff_df['fixed_effect'] = model.fe_params['Intercept']
174
- random_eff_df['panel_effect'] = random_eff_df['random_effect'] + random_eff_df['fixed_effect']
175
- # random_eff_df.to_csv("Test/random_eff_df_contri.csv", index=False)
176
-
177
- coef_df = pd.DataFrame(model.fe_params)
178
- coef_df.columns = ['coef']
179
-
180
- # coef_df.reset_index().to_csv("Test/coef_df_contri1.csv",index=False)
181
- # print(model.fe_params)
182
-
183
- x_train_contribution = X_train.copy()
184
- x_test_contribution = X_test.copy()
185
-
186
- # preprocessing not needed since X_train is already preprocessed
187
- # X1, X2 = process_train_and_test(x_train_contribution, x_test_contribution, best_feature_set, panel_col, target_col)
188
- # x_train_contribution[best_feature_set] = X1[best_feature_set]
189
- # x_test_contribution[best_feature_set] = X2[best_feature_set]
190
-
191
- x_train_contribution = mdf_predict(x_train_contribution, model, random_eff_df)
192
- x_test_contribution = mdf_predict(x_test_contribution, model, random_eff_df)
193
-
194
- x_train_contribution = pd.merge(x_train_contribution, random_eff_df[[panel_col, 'panel_effect']], on=panel_col,
195
- how='left')
196
- x_test_contribution = pd.merge(x_test_contribution, random_eff_df[[panel_col, 'panel_effect']], on=panel_col,
197
- how='left')
198
-
199
- inp_coef = coef_df['coef'][1:].tolist() # 0th index is intercept
200
-
201
- for i in range(len(inp_coef)):
202
- x_train_contribution[str(best_feature_set[i]) + "_contr"] = inp_coef[i] * x_train_contribution[best_feature_set[i]]
203
- x_test_contribution[str(best_feature_set[i]) + "_contr"] = inp_coef[i] * x_test_contribution[best_feature_set[i]]
204
-
205
- x_train_contribution['sum_contributions'] = x_train_contribution.filter(regex="contr").sum(axis=1)
206
- x_train_contribution['sum_contributions'] = x_train_contribution['sum_contributions'] + x_train_contribution['panel_effect']
207
-
208
- x_test_contribution['sum_contributions'] = x_test_contribution.filter(regex="contr").sum(axis=1)
209
- x_test_contribution['sum_contributions'] = x_test_contribution['sum_contributions'] + x_test_contribution['panel_effect']
210
-
211
- # # test
212
- x_train_contribution.to_csv("Test/x_train_contribution.csv",index=False)
213
- x_test_contribution.to_csv("Test/x_test_contribution.csv",index=False)
214
- #
215
- # st.session_state['orig_media_data'].to_csv("Test/transformed_data.csv",index=False)
216
- # st.session_state['X_test_spends'].to_csv("Test/test_spends.csv",index=False)
217
- # # st.write(st.session_state['orig_media_data'].columns)
218
-
219
- st.write(date_col,panel_col)
220
- # st.write(x_test_contribution)
221
-
222
- overview_test_data_prep_panel(x_test_contribution, st.session_state['orig_media_data'], st.session_state['X_test_spends'],
223
- date_col, panel_col, target_col)
224
-
225
- else : # NON PANEL
226
- if st.session_state["is_tuned_model"][target_col]==True: #Sprint4
227
- with open("tuned_model.pkl", 'rb') as file:
228
- model_dict = pickle.load(file)
229
- saved_models = list(model_dict.keys())
230
- required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
231
- sel_model = st.selectbox("Select the model to review", required_saved_models)
232
- sel_model_dict = model_dict[sel_model + "__" + target_col]
233
-
234
- model=sel_model_dict["Model_object"]
235
- X_train=sel_model_dict["X_train_tuned"]
236
- X_test=sel_model_dict["X_test_tuned"]
237
- best_feature_set=sel_model_dict["feature_set"]
238
-
239
- else : #Sprint4
240
- with open("best_models.pkl", 'rb') as file:
241
- model_dict = pickle.load(file)
242
- saved_models = list(model_dict.keys())
243
- required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
244
- sel_model = st.selectbox("Select the model to review", required_saved_models)
245
- sel_model_dict = model_dict[sel_model + "__" + target_col]
246
-
247
- model=sel_model_dict["Model_object"]
248
- X_train=sel_model_dict["X_train"]
249
- X_test=sel_model_dict["X_test"]
250
- best_feature_set=sel_model_dict["feature_set"]
251
-
252
- x_train_contribution = X_train.copy()
253
- x_test_contribution = X_test.copy()
254
-
255
- x_train_contribution['pred'] = model.predict(x_train_contribution[best_feature_set])
256
- x_test_contribution['pred'] = model.predict(x_test_contribution[best_feature_set])
257
-
258
- for num,i in enumerate(model.params.values):
259
- col=best_feature_set[num]
260
- x_train_contribution[col + "_contr"] = X_train[col] * i
261
- x_test_contribution[col + "_contr"] = X_test[col] * i
262
-
263
- x_test_contribution.to_csv("Test/x_test_contribution_non_panel.csv",index=False)
264
- overview_test_data_prep_nonpanel(x_test_contribution, st.session_state['orig_media_data'].copy(), st.session_state['X_test_spends'].copy(), date_col, target_col)
265
- # for k, v in st.session_sta
266
- # te.items():
267
-
268
- # if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
269
- # st.session_state[k] = v
270
-
271
- # authenticator = st.session_state.get('authenticator')
272
-
273
- # if authenticator is None:
274
- # authenticator = load_authenticator()
275
-
276
- # name, authentication_status, username = authenticator.login('Login', 'main')
277
- # auth_status = st.session_state['authentication_status']
278
-
279
- # if auth_status:
280
- # authenticator.logout('Logout', 'main')
281
-
282
- # is_state_initiaized = st.session_state.get('initialized',False)
283
- # if not is_state_initiaized:
284
-
285
- initialize_data(target_col)
286
- scenario = st.session_state['scenario']
287
- raw_df = st.session_state['raw_df']
288
- st.header('Overview of previous spends')
289
-
290
- # st.write(scenario.actual_total_spends)
291
- # st.write(scenario.actual_total_sales)
292
- columns = st.columns((1,1,3))
293
-
294
- with columns[0]:
295
- st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
296
- ###print(f"##################### {scenario.actual_total_sales} ##################")
297
- with columns[1]:
298
- st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
299
-
300
-
301
- actual_summary_df = create_channel_summary(scenario)
302
- actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
303
-
304
- columns = st.columns((2,1))
305
- with columns[0]:
306
- with st.expander('Channel wise overview'):
307
- st.markdown(actual_summary_df.style.set_table_styles(
308
- [{
309
- 'selector': 'th',
310
- 'props': [('background-color', '#11B6BD')]
311
- },
312
- {
313
- 'selector' : 'tr:nth-child(even)',
314
- 'props' : [('background-color', '#11B6BD')]
315
- }]).to_html(), unsafe_allow_html=True)
316
-
317
- st.markdown("<hr>",unsafe_allow_html=True)
318
- ##############################
319
-
320
- st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
321
- st.markdown("<hr>",unsafe_allow_html=True)
322
-
323
-
324
- ################################3
325
- st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
326
- st.markdown("<hr>",unsafe_allow_html=True)
327
- #######################################
328
-
329
- selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
330
- selected_channel = scenario.channels.get(selected_channel_name,None)
331
-
332
- st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
333
-
334
- st.markdown("<hr>",unsafe_allow_html=True)
335
-
336
- # elif auth_status == False:
337
- # st.error('Username/Password is incorrect')
338
-
339
- # if auth_status != True:
340
- # try:
341
- # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
342
- # if username_forgot_pw:
343
- # st.success('New password sent securely')
344
- # # Random password to be transferred to user securely
345
- # elif username_forgot_pw == False:
346
- # st.error('Username not found')
347
- # except Exception as e:
348
- # st.error(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/7_Build_Response_Curves.py DELETED
@@ -1,185 +0,0 @@
1
- import streamlit as st
2
- import plotly.express as px
3
- import numpy as np
4
- import plotly.graph_objects as go
5
- from utilities_with_panel import channel_name_formating, load_authenticator, initialize_data
6
- from sklearn.metrics import r2_score
7
- from collections import OrderedDict
8
- from classes import class_from_dict,class_to_dict
9
- import pickle
10
- import json
11
- from utilities import (
12
- load_local_css,
13
- set_header,
14
- channel_name_formating,
15
- )
16
-
17
- for k, v in st.session_state.items():
18
- if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
19
- st.session_state[k] = v
20
-
21
- def s_curve(x,K,b,a,x0):
22
- return K / (1 + b*np.exp(-a*(x-x0)))
23
-
24
- def save_scenario(scenario_name):
25
- """
26
- Save the current scenario with the mentioned name in the session state
27
-
28
- Parameters
29
- ----------
30
- scenario_name
31
- Name of the scenario to be saved
32
- """
33
- if 'saved_scenarios' not in st.session_state:
34
- st.session_state = OrderedDict()
35
-
36
- #st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
37
- st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
38
- st.session_state['scenario_input'] = ""
39
- print(type(st.session_state['saved_scenarios']))
40
- with open('../saved_scenarios.pkl', 'wb') as f:
41
- pickle.dump(st.session_state['saved_scenarios'],f)
42
-
43
-
44
- def reset_curve_parameters():
45
- del st.session_state['K']
46
- del st.session_state['b']
47
- del st.session_state['a']
48
- del st.session_state['x0']
49
-
50
- def update_response_curve():
51
- # st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K']
52
- # st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b']
53
- # st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a']
54
- # st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0']
55
- # rcs = st.session_state['rcs']
56
- _channel_class = st.session_state['scenario'].channels[selected_channel_name]
57
- _channel_class.update_response_curves({
58
- 'K' : st.session_state['K'],
59
- 'b' : st.session_state['b'],
60
- 'a' : st.session_state['a'],
61
- 'x0' : st.session_state['x0']})
62
-
63
-
64
- # authenticator = st.session_state.get('authenticator')
65
- # if authenticator is None:
66
- # authenticator = load_authenticator()
67
-
68
- # name, authentication_status, username = authenticator.login('Login', 'main')
69
- # auth_status = st.session_state.get('authentication_status')
70
-
71
- # if auth_status == True:
72
- # is_state_initiaized = st.session_state.get('initialized',False)
73
- # if not is_state_initiaized:
74
- # print("Scenario page state reloaded")
75
-
76
- # Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
77
- st.set_page_config(layout='wide')
78
- load_local_css('styles.css')
79
- set_header()
80
-
81
- if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]:
82
- sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
83
- target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
84
- else :
85
- sel_target_col = 'Total Approved Accounts - Revenue'
86
- target_col = 'total_approved_accounts_revenue'
87
-
88
- initialize_data(target_col)
89
-
90
- st.subheader("Build response curves")
91
-
92
- channels_list = st.session_state['channels_list']
93
- selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['Others'], format_func=channel_name_formating,on_change=reset_curve_parameters)
94
-
95
- rcs = {}
96
- for channel_name in channels_list:
97
- rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params
98
- # rcs = st.session_state['rcs']
99
-
100
-
101
- if 'K' not in st.session_state:
102
- st.session_state['K'] = rcs[selected_channel_name]['K']
103
- if 'b' not in st.session_state:
104
- st.session_state['b'] = rcs[selected_channel_name]['b']
105
- if 'a' not in st.session_state:
106
- st.session_state['a'] = rcs[selected_channel_name]['a']
107
- if 'x0' not in st.session_state:
108
- st.session_state['x0'] = rcs[selected_channel_name]['x0']
109
-
110
- x = st.session_state['actual_input_df'][selected_channel_name].values
111
- y = st.session_state['actual_contribution_df'][selected_channel_name].values
112
-
113
- power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
114
-
115
- # fig = px.scatter(x, s_curve(x/10**power,
116
- # st.session_state['K'],
117
- # st.session_state['b'],
118
- # st.session_state['a'],
119
- # st.session_state['x0']))
120
-
121
- fig = px.scatter(x=x, y=y)
122
- fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'],
123
- st.session_state['b'],
124
- st.session_state['a'],
125
- st.session_state['x0']),
126
- line=dict(color='red')))
127
-
128
- fig.update_layout(title_text="Response Curve",showlegend=False)
129
- fig.update_annotations(font_size=10)
130
- fig.update_xaxes(title='Spends')
131
- fig.update_yaxes(title=sel_target_col)
132
-
133
- st.plotly_chart(fig,use_container_width=True)
134
-
135
- r2 = r2_score(y, s_curve(x / 10**power,
136
- st.session_state['K'],
137
- st.session_state['b'],
138
- st.session_state['a'],
139
- st.session_state['x0']))
140
-
141
- st.metric('R2',round(r2,2))
142
- columns = st.columns(4)
143
-
144
- with columns[0]:
145
- st.number_input('K',key='K',format="%0.5f")
146
- with columns[1]:
147
- st.number_input('b',key='b',format="%0.5f")
148
- with columns[2]:
149
- st.number_input('a',key='a',step=0.0001,format="%0.5f")
150
- with columns[3]:
151
- st.number_input('x0',key='x0',format="%0.5f")
152
-
153
-
154
- st.button('Update parameters',on_click=update_response_curve)
155
- st.button('Reset parameters',on_click=reset_curve_parameters)
156
- scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
157
- st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)
158
-
159
- file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed')
160
- st.download_button(
161
- label="Download response curves",
162
- data=json.dumps(rcs),
163
- file_name=f"{file_name}.json",
164
- mime="application/json",
165
- disabled= len(file_name) == 0,
166
- )
167
-
168
-
169
- def s_curve_derivative(x, K, b, a, x0):
170
- # Derivative of the S-curve function
171
- return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2)
172
-
173
- # Parameters of the S-curve
174
- K = st.session_state['K']
175
- b = st.session_state['b']
176
- a = st.session_state['a']
177
- x0 = st.session_state['x0']
178
-
179
- # Optimized spend value obtained from the tool
180
- optimized_spend = st.number_input('value of x') # Replace this with your optimized spend value
181
-
182
- # Calculate the slope at the optimized spend value
183
- slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0)
184
-
185
- st.write("Slope ", slope_at_optimized_spend)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/8_Scenario_Planner.py DELETED
@@ -1,1133 +0,0 @@
1
- import streamlit as st
2
- from numerize.numerize import numerize
3
- import numpy as np
4
- from functools import partial
5
- from collections import OrderedDict
6
- from plotly.subplots import make_subplots
7
- import plotly.graph_objects as go
8
- from utilities import (
9
- format_numbers,
10
- load_local_css,
11
- set_header,
12
- initialize_data,
13
- load_authenticator,
14
- send_email,
15
- channel_name_formating,
16
- )
17
- from classes import class_from_dict, class_to_dict
18
- import pickle
19
- import streamlit_authenticator as stauth
20
- import yaml
21
- from yaml import SafeLoader
22
- import re
23
- import pandas as pd
24
- import plotly.express as px
25
-
26
- target = "Revenue"
27
- st.set_page_config(layout="wide")
28
- load_local_css("styles.css")
29
- set_header()
30
-
31
- for k, v in st.session_state.items():
32
- if k not in ["logout", "login", "config"] and not k.startswith(
33
- "FormSubmitter"
34
- ):
35
- st.session_state[k] = v
36
- # ======================================================== #
37
- # ======================= Functions ====================== #
38
- # ======================================================== #
39
-
40
-
41
- def optimize(key):
42
- """
43
- Optimize the spends for the sales
44
- """
45
-
46
- channel_list = [
47
- key
48
- for key, value in st.session_state["optimization_channels"].items()
49
- if value
50
- ]
51
- # print('channel_list')
52
- # print(channel_list)
53
- # print('@@@@@@@@')
54
- if len(channel_list) > 0:
55
- scenario = st.session_state["scenario"]
56
- if key.lower() == "spends":
57
- with status_placeholder:
58
- with st.spinner("Optimizing"):
59
- result = st.session_state["scenario"].optimize(
60
- st.session_state["total_spends_change"], channel_list
61
- )
62
- elif key.lower() == "sales":
63
- with status_placeholder:
64
- with st.spinner("Optimizing"):
65
-
66
- result = st.session_state["scenario"].optimize_spends(
67
- st.session_state["total_sales_change"], channel_list
68
- )
69
- for channel_name, modified_spends in result:
70
-
71
- st.session_state[channel_name] = numerize(
72
- modified_spends
73
- * scenario.channels[channel_name].conversion_rate,
74
- 1,
75
- )
76
- prev_spends = (
77
- st.session_state["scenario"]
78
- .channels[channel_name]
79
- .actual_total_spends
80
- )
81
- st.session_state[f"{channel_name}_change"] = round(
82
- 100 * (modified_spends - prev_spends) / prev_spends, 2
83
- )
84
-
85
-
86
- def save_scenario(scenario_name):
87
- """
88
- Save the current scenario with the mentioned name in the session state
89
-
90
- Parameters
91
- ----------
92
- scenario_name
93
- Name of the scenario to be saved
94
- """
95
- if "saved_scenarios" not in st.session_state:
96
- st.session_state = OrderedDict()
97
-
98
- # st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
99
- st.session_state["saved_scenarios"][scenario_name] = class_to_dict(
100
- st.session_state["scenario"]
101
- )
102
- st.session_state["scenario_input"] = ""
103
- # print(type(st.session_state['saved_scenarios']))
104
- with open("../saved_scenarios.pkl", "wb") as f:
105
- pickle.dump(st.session_state["saved_scenarios"], f)
106
-
107
-
108
- def update_sales_abs():
109
- actual_sales = _scenario.actual_total_sales
110
- if validate_input(st.session_state["total_sales_change_abs"]):
111
- modified_sales = extract_number_for_string(
112
- st.session_state["total_sales_change_abs"]
113
- )
114
- st.session_state["total_sales_change"] = round(
115
- ((modified_sales / actual_sales) - 1) * 100
116
- )
117
-
118
-
119
- def update_sales():
120
- st.session_state["total_sales_change_abs"] = numerize(
121
- (1 + st.session_state["total_sales_change"] / 100)
122
- * _scenario.actual_total_sales,
123
- 1,
124
- )
125
-
126
-
127
- def update_all_spends_abs():
128
- actual_spends = _scenario.actual_total_spends
129
- if validate_input(st.session_state["total_spends_change_abs"]):
130
- modified_spends = extract_number_for_string(
131
- st.session_state["total_spends_change_abs"]
132
- )
133
- print(modified_spends)
134
- print(actual_spends)
135
-
136
- st.session_state["total_spends_change"] = (
137
- (modified_spends / actual_spends) - 1
138
- ) * 100
139
-
140
- update_all_spends()
141
-
142
-
143
- def update_all_spends():
144
- """
145
- Updates spends for all the channels with the given overall spends change
146
- """
147
- percent_change = st.session_state["total_spends_change"]
148
- st.session_state["total_spends_change_abs"] = numerize(
149
- (1 + percent_change / 100) * _scenario.actual_total_spends, 1
150
- )
151
- for channel_name in st.session_state["channels_list"]:
152
- channel = st.session_state["scenario"].channels[channel_name]
153
- current_spends = channel.actual_total_spends
154
- modified_spends = (1 + percent_change / 100) * current_spends
155
- st.session_state["scenario"].update(channel_name, modified_spends)
156
- st.session_state[channel_name] = numerize(
157
- modified_spends * channel.conversion_rate, 1
158
- )
159
- st.session_state[f"{channel_name}_change"] = percent_change
160
-
161
-
162
- def extract_number_for_string(string_input):
163
- string_input = string_input.upper()
164
- if string_input.endswith("K"):
165
- return float(string_input[:-1]) * 10**3
166
- elif string_input.endswith("M"):
167
- return float(string_input[:-1]) * 10**6
168
- elif string_input.endswith("B"):
169
- return float(string_input[:-1]) * 10**9
170
-
171
-
172
- def validate_input(string_input):
173
- pattern = r"\d+\.?\d*[K|M|B]$"
174
- match = re.match(pattern, string_input)
175
- if match is None:
176
- return False
177
- return True
178
-
179
-
180
- def update_data_by_percent(channel_name):
181
- prev_spends = (
182
- st.session_state["scenario"].channels[channel_name].actual_total_spends
183
- * st.session_state["scenario"].channels[channel_name].conversion_rate
184
- )
185
- modified_spends = prev_spends * (
186
- 1 + st.session_state[f"{channel_name}_change"] / 100
187
- )
188
- st.session_state[channel_name] = numerize(modified_spends, 1)
189
- st.session_state["scenario"].update(
190
- channel_name,
191
- modified_spends
192
- / st.session_state["scenario"].channels[channel_name].conversion_rate,
193
- )
194
-
195
-
196
- def update_data(channel_name):
197
- """
198
- Updates the spends for the given channel
199
- """
200
-
201
- if validate_input(st.session_state[channel_name]):
202
- modified_spends = extract_number_for_string(
203
- st.session_state[channel_name]
204
- )
205
- prev_spends = (
206
- st.session_state["scenario"]
207
- .channels[channel_name]
208
- .actual_total_spends
209
- * st.session_state["scenario"]
210
- .channels[channel_name]
211
- .conversion_rate
212
- )
213
- st.session_state[f"{channel_name}_change"] = round(
214
- 100 * (modified_spends - prev_spends) / prev_spends, 2
215
- )
216
- st.session_state["scenario"].update(
217
- channel_name,
218
- modified_spends
219
- / st.session_state["scenario"]
220
- .channels[channel_name]
221
- .conversion_rate,
222
- )
223
- # st.session_state['scenario'].update(channel_name, modified_spends)
224
- # else:
225
- # try:
226
- # modified_spends = float(st.session_state[channel_name])
227
- # prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
228
- # st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
229
- # st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
230
- # st.session_state[f'{channel_name}'] = numerize(modified_spends,1)
231
- # except ValueError:
232
- # st.write('Invalid input')
233
-
234
-
235
- def select_channel_for_optimization(channel_name):
236
- """
237
- Marks the given channel for optimization
238
- """
239
- st.session_state["optimization_channels"][channel_name] = st.session_state[
240
- f"{channel_name}_selected"
241
- ]
242
-
243
-
244
- def select_all_channels_for_optimization():
245
- """
246
- Marks all the channel for optimization
247
- """
248
- for channel_name in st.session_state["optimization_channels"].keys():
249
- st.session_state[f"{channel_name}_selected"] = st.session_state[
250
- "optimze_all_channels"
251
- ]
252
- st.session_state["optimization_channels"][channel_name] = (
253
- st.session_state["optimze_all_channels"]
254
- )
255
-
256
-
257
- def update_penalty():
258
- """
259
- Updates the penalty flag for sales calculation
260
- """
261
- st.session_state["scenario"].update_penalty(
262
- st.session_state["apply_penalty"]
263
- )
264
-
265
-
266
- def reset_scenario():
267
- # #print(st.session_state['default_scenario_dict'])
268
- # st.session_state['scenario'] = class_from_dict(st.session_state['default_scenario_dict'])
269
- # for channel in st.session_state['scenario'].channels.values():
270
- # st.session_state[channel.name] = float(channel.actual_total_spends * channel.conversion_rate)
271
- initialize_data()
272
- for channel_name in st.session_state["channels_list"]:
273
- st.session_state[f"{channel_name}_selected"] = False
274
- st.session_state[f"{channel_name}_change"] = 0
275
- st.session_state["optimze_all_channels"] = False
276
-
277
-
278
- def format_number(num):
279
- if num >= 1_000_000:
280
- return f"{num / 1_000_000:.2f}M"
281
- elif num >= 1_000:
282
- return f"{num / 1_000:.0f}K"
283
- else:
284
- return f"{num:.2f}"
285
-
286
-
287
- def summary_plot(data, x, y, title, text_column):
288
- fig = px.bar(
289
- data,
290
- x=x,
291
- y=y,
292
- orientation="h",
293
- title=title,
294
- text=text_column,
295
- color="Channel_name",
296
- )
297
-
298
- # Convert text_column to numeric values
299
- data[text_column] = pd.to_numeric(data[text_column], errors="coerce")
300
-
301
- # Update the format of the displayed text based on magnitude
302
- fig.update_traces(
303
- texttemplate="%{text:.2s}",
304
- textposition="outside",
305
- hovertemplate="%{x:.2s}",
306
- )
307
-
308
- fig.update_layout(
309
- xaxis_title=x, yaxis_title="Channel Name", showlegend=False
310
- )
311
- return fig
312
-
313
-
314
- def s_curve(x, K, b, a, x0):
315
- return K / (1 + b * np.exp(-a * (x - x0)))
316
-
317
-
318
- def find_segment_value(x, roi, mroi):
319
- start_value = x[0]
320
- end_value = x[len(x) - 1]
321
-
322
- # Condition for green region: Both MROI and ROI > 1
323
- green_condition = (roi > 1) & (mroi > 1)
324
- left_indices = np.where(green_condition)[0]
325
- left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
326
-
327
- right_indices = np.where(green_condition)[0]
328
- right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
329
-
330
- return start_value, end_value, left_value, right_value
331
-
332
-
333
- def calculate_rgba(
334
- start_value, end_value, left_value, right_value, current_channel_spends
335
- ):
336
- # Initialize alpha to None for clarity
337
- alpha = None
338
-
339
- # Determine the color and calculate relative_position and alpha based on the point's position
340
- if start_value <= current_channel_spends <= left_value:
341
- color = "yellow"
342
- relative_position = (current_channel_spends - start_value) / (
343
- left_value - start_value
344
- )
345
- alpha = 0.8 - (
346
- 0.6 * relative_position
347
- ) # Alpha decreases from start to end
348
-
349
- elif left_value < current_channel_spends <= right_value:
350
- color = "green"
351
- relative_position = (current_channel_spends - left_value) / (
352
- right_value - left_value
353
- )
354
- alpha = 0.8 - (
355
- 0.6 * relative_position
356
- ) # Alpha decreases from start to end
357
-
358
- elif right_value < current_channel_spends <= end_value:
359
- color = "red"
360
- relative_position = (current_channel_spends - right_value) / (
361
- end_value - right_value
362
- )
363
- alpha = 0.2 + (
364
- 0.6 * relative_position
365
- ) # Alpha increases from start to end
366
-
367
- else:
368
- # Default case, if the spends are outside the defined ranges
369
- return "rgba(136, 136, 136, 0.5)" # Grey for values outside the range
370
-
371
- # Ensure alpha is within the intended range in case of any calculation overshoot
372
- alpha = max(0.2, min(alpha, 0.8))
373
-
374
- # Define color codes for RGBA
375
- color_codes = {
376
- "yellow": "255, 255, 0", # RGB for yellow
377
- "green": "0, 128, 0", # RGB for green
378
- "red": "255, 0, 0", # RGB for red
379
- }
380
-
381
- rgba = f"rgba({color_codes[color]}, {alpha})"
382
- return rgba
383
-
384
-
385
- def debug_temp(x_test, power, K, b, a, x0):
386
- print("*" * 100)
387
- # Calculate the count of bins
388
- count_lower_bin = sum(1 for x in x_test if x <= 2524)
389
- count_center_bin = sum(1 for x in x_test if x > 2524 and x <= 3377)
390
- count_ = sum(1 for x in x_test if x > 3377)
391
-
392
- print(
393
- f"""
394
- lower : {count_lower_bin}
395
- center : {count_center_bin}
396
- upper : {count_}
397
- """
398
- )
399
-
400
-
401
- # @st.cache
402
- def plot_response_curves():
403
- cols = 4
404
- rows = (
405
- len(channels_list) // cols
406
- if len(channels_list) % cols == 0
407
- else len(channels_list) // cols + 1
408
- )
409
- rcs = st.session_state["rcs"]
410
- shapes = []
411
- fig = make_subplots(rows=rows, cols=cols, subplot_titles=channels_list)
412
- for i in range(0, len(channels_list)):
413
- col = channels_list[i]
414
- x_actual = st.session_state["scenario"].channels[col].actual_spends
415
- # x_modified = st.session_state["scenario"].channels[col].modified_spends
416
-
417
- power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
418
-
419
- K = rcs[col]["K"]
420
- b = rcs[col]["b"]
421
- a = rcs[col]["a"]
422
- x0 = rcs[col]["x0"]
423
-
424
- x_plot = np.linspace(0, 5 * x_actual.sum(), 50)
425
-
426
- x, y, marginal_roi = [], [], []
427
- for x_p in x_plot:
428
- x.append(x_p * x_actual / x_actual.sum())
429
-
430
- for index in range(len(x_plot)):
431
- y.append(s_curve(x[index] / 10**power, K, b, a, x0))
432
-
433
- for index in range(len(x_plot)):
434
- marginal_roi.append(
435
- a
436
- * y[index]
437
- * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
438
- )
439
-
440
- x = (
441
- np.sum(x, axis=1)
442
- * st.session_state["scenario"].channels[col].conversion_rate
443
- )
444
- y = np.sum(y, axis=1)
445
- marginal_roi = (
446
- np.average(marginal_roi, axis=1)
447
- / st.session_state["scenario"].channels[col].conversion_rate
448
- )
449
-
450
- roi = y / np.maximum(x, np.finfo(float).eps)
451
-
452
- fig.add_trace(
453
- go.Scatter(
454
- x=x,
455
- y=y,
456
- name=col,
457
- customdata=np.stack((roi, marginal_roi), axis=-1),
458
- hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
459
- line=dict(color="blue"),
460
- ),
461
- row=1 + (i) // cols,
462
- col=i % cols + 1,
463
- )
464
-
465
- x_optimal = (
466
- st.session_state["scenario"].channels[col].modified_total_spends
467
- * st.session_state["scenario"].channels[col].conversion_rate
468
- )
469
- y_optimal = (
470
- st.session_state["scenario"].channels[col].modified_total_sales
471
- )
472
-
473
- # if col == "Paid_social_others":
474
- # debug_temp(x_optimal * x_actual / x_actual.sum(), power, K, b, a, x0)
475
-
476
- fig.add_trace(
477
- go.Scatter(
478
- x=[x_optimal],
479
- y=[y_optimal],
480
- name=col,
481
- legendgroup=col,
482
- showlegend=False,
483
- marker=dict(color=["black"]),
484
- ),
485
- row=1 + (i) // cols,
486
- col=i % cols + 1,
487
- )
488
-
489
- shapes.append(
490
- go.layout.Shape(
491
- type="line",
492
- x0=0,
493
- y0=y_optimal,
494
- x1=x_optimal,
495
- y1=y_optimal,
496
- line_width=1,
497
- line_dash="dash",
498
- line_color="black",
499
- xref=f"x{i+1}",
500
- yref=f"y{i+1}",
501
- )
502
- )
503
-
504
- shapes.append(
505
- go.layout.Shape(
506
- type="line",
507
- x0=x_optimal,
508
- y0=0,
509
- x1=x_optimal,
510
- y1=y_optimal,
511
- line_width=1,
512
- line_dash="dash",
513
- line_color="black",
514
- xref=f"x{i+1}",
515
- yref=f"y{i+1}",
516
- )
517
- )
518
-
519
- start_value, end_value, left_value, right_value = find_segment_value(
520
- x,
521
- roi,
522
- marginal_roi,
523
- )
524
-
525
- # Adding background colors
526
- y_max = y.max() * 1.3 # 30% extra space above the max
527
-
528
- # Yellow region
529
- shapes.append(
530
- go.layout.Shape(
531
- type="rect",
532
- x0=start_value,
533
- y0=0,
534
- x1=left_value,
535
- y1=y_max,
536
- line=dict(width=0),
537
- fillcolor="rgba(255, 255, 0, 0.3)",
538
- layer="below",
539
- xref=f"x{i+1}",
540
- yref=f"y{i+1}",
541
- )
542
- )
543
-
544
- # Green region
545
- shapes.append(
546
- go.layout.Shape(
547
- type="rect",
548
- x0=left_value,
549
- y0=0,
550
- x1=right_value,
551
- y1=y_max,
552
- line=dict(width=0),
553
- fillcolor="rgba(0, 255, 0, 0.3)",
554
- layer="below",
555
- xref=f"x{i+1}",
556
- yref=f"y{i+1}",
557
- )
558
- )
559
-
560
- # Red region
561
- shapes.append(
562
- go.layout.Shape(
563
- type="rect",
564
- x0=right_value,
565
- y0=0,
566
- x1=end_value,
567
- y1=y_max,
568
- line=dict(width=0),
569
- fillcolor="rgba(255, 0, 0, 0.3)",
570
- layer="below",
571
- xref=f"x{i+1}",
572
- yref=f"y{i+1}",
573
- )
574
- )
575
-
576
- fig.update_layout(
577
- # height=1000,
578
- # width=1000,
579
- title_text="Response Curves (X: Spends Vs Y: Revenue)",
580
- showlegend=False,
581
- shapes=shapes,
582
- )
583
- fig.update_annotations(font_size=10)
584
- # fig.update_xaxes(title="Spends")
585
- # fig.update_yaxes(title=target)
586
- fig.update_yaxes(
587
- gridcolor="rgba(136, 136, 136, 0.5)", gridwidth=0.5, griddash="dash"
588
- )
589
-
590
- return fig
591
-
592
-
593
- # @st.cache
594
- # def plot_response_curves():
595
- # cols = 4
596
- # rcs = st.session_state["rcs"]
597
- # shapes = []
598
- # fig = make_subplots(rows=6, cols=cols, subplot_titles=channels_list)
599
- # for i in range(0, len(channels_list)):
600
- # col = channels_list[i]
601
- # x = st.session_state["actual_df"][col].values
602
- # spends = x.sum()
603
- # power = np.ceil(np.log(x.max()) / np.log(10)) - 3
604
- # x = np.linspace(0, 3 * x.max(), 200)
605
-
606
- # K = rcs[col]["K"]
607
- # b = rcs[col]["b"]
608
- # a = rcs[col]["a"]
609
- # x0 = rcs[col]["x0"]
610
-
611
- # y = s_curve(x / 10**power, K, b, a, x0)
612
- # roi = y / x
613
- # marginal_roi = a * (y) * (1 - y / K)
614
- # fig.add_trace(
615
- # go.Scatter(
616
- # x=52
617
- # * x
618
- # * st.session_state["scenario"].channels[col].conversion_rate,
619
- # y=52 * y,
620
- # name=col,
621
- # customdata=np.stack((roi, marginal_roi), axis=-1),
622
- # hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
623
- # ),
624
- # row=1 + (i) // cols,
625
- # col=i % cols + 1,
626
- # )
627
-
628
- # fig.add_trace(
629
- # go.Scatter(
630
- # x=[
631
- # spends
632
- # * st.session_state["scenario"]
633
- # .channels[col]
634
- # .conversion_rate
635
- # ],
636
- # y=[52 * s_curve(spends / (10**power * 52), K, b, a, x0)],
637
- # name=col,
638
- # legendgroup=col,
639
- # showlegend=False,
640
- # marker=dict(color=["black"]),
641
- # ),
642
- # row=1 + (i) // cols,
643
- # col=i % cols + 1,
644
- # )
645
-
646
- # shapes.append(
647
- # go.layout.Shape(
648
- # type="line",
649
- # x0=0,
650
- # y0=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
651
- # x1=spends
652
- # * st.session_state["scenario"].channels[col].conversion_rate,
653
- # y1=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
654
- # line_width=1,
655
- # line_dash="dash",
656
- # line_color="black",
657
- # xref=f"x{i+1}",
658
- # yref=f"y{i+1}",
659
- # )
660
- # )
661
-
662
- # shapes.append(
663
- # go.layout.Shape(
664
- # type="line",
665
- # x0=spends
666
- # * st.session_state["scenario"].channels[col].conversion_rate,
667
- # y0=0,
668
- # x1=spends
669
- # * st.session_state["scenario"].channels[col].conversion_rate,
670
- # y1=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
671
- # line_width=1,
672
- # line_dash="dash",
673
- # line_color="black",
674
- # xref=f"x{i+1}",
675
- # yref=f"y{i+1}",
676
- # )
677
- # )
678
-
679
- # fig.update_layout(
680
- # height=1500,
681
- # width=1000,
682
- # title_text="Response Curves",
683
- # showlegend=False,
684
- # shapes=shapes,
685
- # )
686
- # fig.update_annotations(font_size=10)
687
- # fig.update_xaxes(title="Spends")
688
- # fig.update_yaxes(title=target)
689
- # return fig
690
-
691
-
692
- # ======================================================== #
693
- # ==================== HTML Components =================== #
694
- # ======================================================== #
695
-
696
-
697
- def generate_spending_header(heading):
698
- return st.markdown(
699
- f"""<h2 class="spends-header">{heading}</h2>""", unsafe_allow_html=True
700
- )
701
-
702
-
703
- # ======================================================== #
704
- # =================== Session variables ================== #
705
- # ======================================================== #
706
-
707
- with open("config.yaml") as file:
708
- config = yaml.load(file, Loader=SafeLoader)
709
- st.session_state["config"] = config
710
-
711
- authenticator = stauth.Authenticate(
712
- config["credentials"],
713
- config["cookie"]["name"],
714
- config["cookie"]["key"],
715
- config["cookie"]["expiry_days"],
716
- config["preauthorized"],
717
- )
718
- st.session_state["authenticator"] = authenticator
719
- name, authentication_status, username = authenticator.login("Login", "main")
720
- auth_status = st.session_state.get("authentication_status")
721
- if auth_status == True:
722
- authenticator.logout("Logout", "main")
723
- is_state_initiaized = st.session_state.get("initialized", False)
724
- if not is_state_initiaized:
725
- initialize_data()
726
-
727
- channels_list = st.session_state["channels_list"]
728
-
729
- # ======================================================== #
730
- # ========================== UI ========================== #
731
- # ======================================================== #
732
-
733
- # print(list(st.session_state.keys()))
734
-
735
- st.header("Simulation")
736
- main_header = st.columns((2, 2))
737
- sub_header = st.columns((1, 1, 1, 1))
738
- _scenario = st.session_state["scenario"]
739
-
740
- if "total_spends_change_abs" not in st.session_state:
741
- st.session_state["total_spends_change_abs"] = numerize(
742
- _scenario.actual_total_spends, 1
743
- )
744
-
745
- if "total_sales_change_abs" not in st.session_state:
746
- st.session_state["total_sales_change_abs"] = numerize(
747
- _scenario.actual_total_sales, 1
748
- )
749
-
750
- with main_header[0]:
751
- st.subheader("Actual")
752
-
753
- with main_header[-1]:
754
- st.subheader("Simulated")
755
-
756
- with sub_header[0]:
757
- st.metric(
758
- label="Spends", value=format_numbers(_scenario.actual_total_spends)
759
- )
760
-
761
- with sub_header[1]:
762
- st.metric(
763
- label=target,
764
- value=format_numbers(
765
- float(_scenario.actual_total_sales), include_indicator=False
766
- ),
767
- )
768
-
769
- with sub_header[2]:
770
- st.metric(
771
- label="Spends",
772
- value=format_numbers(_scenario.modified_total_spends),
773
- delta=numerize(_scenario.delta_spends, 1),
774
- )
775
-
776
- with sub_header[3]:
777
- st.metric(
778
- label=target,
779
- value=format_numbers(
780
- float(_scenario.modified_total_sales), include_indicator=False
781
- ),
782
- delta=numerize(_scenario.delta_sales, 1),
783
- )
784
-
785
- with st.expander("Channel Spends Simulator"):
786
- _columns1 = st.columns((2, 2, 1, 1))
787
- with _columns1[0]:
788
-
789
- optimization_selection = st.selectbox(
790
- "Optimize", options=["Spends", "Sales"], key="optimization_key"
791
- )
792
- with _columns1[1]:
793
- st.markdown("#")
794
- st.checkbox(
795
- label="Optimize all Channels",
796
- key=f"optimze_all_channels",
797
- value=False,
798
- on_change=select_all_channels_for_optimization,
799
- )
800
-
801
- with _columns1[2]:
802
- st.markdown("#")
803
- st.button(
804
- "Optimize",
805
- on_click=optimize,
806
- args=(st.session_state["optimization_key"],),
807
- )
808
-
809
- with _columns1[3]:
810
- st.markdown("#")
811
- st.button("Reset", on_click=reset_scenario)
812
-
813
- _columns2 = st.columns((2, 2, 2))
814
- if st.session_state["optimization_key"] == "Spends":
815
- with _columns2[0]:
816
- spend_input = st.text_input(
817
- "Absolute",
818
- key="total_spends_change_abs",
819
- # label_visibility="collapsed",
820
- on_change=update_all_spends_abs,
821
- )
822
- with _columns2[1]:
823
-
824
- st.number_input(
825
- "Percent",
826
- key=f"total_spends_change",
827
- step=1,
828
- on_change=update_all_spends,
829
- )
830
- elif st.session_state["optimization_key"] == "Sales":
831
- with _columns2[0]:
832
-
833
- sales_input = st.text_input(
834
- "Absolute",
835
- key="total_sales_change_abs",
836
- on_change=update_sales_abs,
837
- )
838
- with _columns2[1]:
839
- st.number_input(
840
- "Percent change",
841
- key=f"total_sales_change",
842
- step=1,
843
- on_change=update_sales,
844
- )
845
-
846
- with _columns2[2]:
847
- st.markdown("#")
848
- status_placeholder = st.empty()
849
-
850
- st.markdown(
851
- """<hr class="spends-heading-seperator">""", unsafe_allow_html=True
852
- )
853
- _columns = st.columns((2.5, 2, 1.5, 1.5, 1))
854
- with _columns[0]:
855
- generate_spending_header("Channel")
856
- with _columns[1]:
857
- generate_spending_header("Spends Input")
858
- with _columns[2]:
859
- generate_spending_header("Spends")
860
- with _columns[3]:
861
- generate_spending_header(target)
862
- with _columns[4]:
863
- generate_spending_header("Optimize")
864
-
865
- st.markdown(
866
- """<hr class="spends-heading-seperator">""", unsafe_allow_html=True
867
- )
868
-
869
- if "acutual_predicted" not in st.session_state:
870
- st.session_state["acutual_predicted"] = {
871
- "Channel_name": [],
872
- "Actual_spend": [],
873
- "Optimized_spend": [],
874
- "Delta": [],
875
- }
876
- for i, channel_name in enumerate(channels_list):
877
- _channel_class = st.session_state["scenario"].channels[
878
- channel_name
879
- ]
880
- _columns = st.columns((2.5, 1.5, 1.5, 1.5, 1))
881
- with _columns[0]:
882
- st.write(channel_name_formating(channel_name))
883
- bin_placeholder = st.container()
884
-
885
- with _columns[1]:
886
- channel_bounds = _channel_class.bounds
887
- channel_spends = float(_channel_class.actual_total_spends)
888
- min_value = float(
889
- (1 + channel_bounds[0] / 100) * channel_spends
890
- )
891
- max_value = float(
892
- (1 + channel_bounds[1] / 100) * channel_spends
893
- )
894
- ##print(st.session_state[channel_name])
895
- spend_input = st.text_input(
896
- channel_name,
897
- key=channel_name,
898
- label_visibility="collapsed",
899
- on_change=partial(update_data, channel_name),
900
- )
901
- if not validate_input(spend_input):
902
- st.error("Invalid input")
903
-
904
- st.number_input(
905
- "Percent change",
906
- key=f"{channel_name}_change",
907
- step=1,
908
- on_change=partial(update_data_by_percent, channel_name),
909
- )
910
-
911
- with _columns[2]:
912
- # spends
913
- current_channel_spends = float(
914
- _channel_class.modified_total_spends
915
- * _channel_class.conversion_rate
916
- )
917
- actual_channel_spends = float(
918
- _channel_class.actual_total_spends
919
- * _channel_class.conversion_rate
920
- )
921
- spends_delta = float(
922
- _channel_class.delta_spends
923
- * _channel_class.conversion_rate
924
- )
925
- st.session_state["acutual_predicted"]["Channel_name"].append(
926
- channel_name
927
- )
928
- st.session_state["acutual_predicted"]["Actual_spend"].append(
929
- actual_channel_spends
930
- )
931
- st.session_state["acutual_predicted"][
932
- "Optimized_spend"
933
- ].append(current_channel_spends)
934
- st.session_state["acutual_predicted"]["Delta"].append(
935
- spends_delta
936
- )
937
- ## REMOVE
938
- st.metric(
939
- "Spends",
940
- format_numbers(current_channel_spends),
941
- delta=numerize(spends_delta, 1),
942
- label_visibility="collapsed",
943
- )
944
-
945
- with _columns[3]:
946
- # sales
947
- current_channel_sales = float(
948
- _channel_class.modified_total_sales
949
- )
950
- actual_channel_sales = float(_channel_class.actual_total_sales)
951
- sales_delta = float(_channel_class.delta_sales)
952
- st.metric(
953
- target,
954
- format_numbers(
955
- current_channel_sales, include_indicator=False
956
- ),
957
- delta=numerize(sales_delta, 1),
958
- label_visibility="collapsed",
959
- )
960
-
961
- with _columns[4]:
962
-
963
- st.checkbox(
964
- label="select for optimization",
965
- key=f"{channel_name}_selected",
966
- value=False,
967
- on_change=partial(
968
- select_channel_for_optimization, channel_name
969
- ),
970
- label_visibility="collapsed",
971
- )
972
-
973
- st.markdown(
974
- """<hr class="spends-child-seperator">""",
975
- unsafe_allow_html=True,
976
- )
977
-
978
- # Bins
979
- col = channels_list[i]
980
- x_actual = st.session_state["scenario"].channels[col].actual_spends
981
- x_modified = (
982
- st.session_state["scenario"].channels[col].modified_spends
983
- )
984
-
985
- x_total = x_modified.sum()
986
- power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
987
-
988
- K = st.session_state["rcs"][col]["K"]
989
- b = st.session_state["rcs"][col]["b"]
990
- a = st.session_state["rcs"][col]["a"]
991
- x0 = st.session_state["rcs"][col]["x0"]
992
-
993
- x_plot = np.linspace(0, 5 * x_actual.sum(), 200)
994
-
995
- x, y, marginal_roi = [], [], []
996
- for x_p in x_plot:
997
- x.append(x_p * x_actual / x_actual.sum())
998
-
999
- for index in range(len(x_plot)):
1000
- y.append(s_curve(x[index] / 10**power, K, b, a, x0))
1001
-
1002
- for index in range(len(x_plot)):
1003
- marginal_roi.append(
1004
- a
1005
- * y[index]
1006
- * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
1007
- )
1008
-
1009
- x = (
1010
- np.sum(x, axis=1)
1011
- * st.session_state["scenario"].channels[col].conversion_rate
1012
- )
1013
- y = np.sum(y, axis=1)
1014
- marginal_roi = (
1015
- np.average(marginal_roi, axis=1)
1016
- / st.session_state["scenario"].channels[col].conversion_rate
1017
- )
1018
-
1019
- roi = y / np.maximum(x, np.finfo(float).eps)
1020
-
1021
- start_value, end_value, left_value, right_value = (
1022
- find_segment_value(
1023
- x,
1024
- roi,
1025
- marginal_roi,
1026
- )
1027
- )
1028
-
1029
- rgba = calculate_rgba(
1030
- start_value,
1031
- end_value,
1032
- left_value,
1033
- right_value,
1034
- current_channel_spends,
1035
- )
1036
-
1037
- # Protecting division by zero by adding a small epsilon to denominators
1038
- roi_current = current_channel_sales / np.maximum(
1039
- current_channel_spends, np.finfo(float).eps
1040
- )
1041
- marginal_roi_current = (
1042
- st.session_state["scenario"]
1043
- .channels[col]
1044
- .get_marginal_roi("modified")
1045
- )
1046
-
1047
- with bin_placeholder:
1048
- st.markdown(
1049
- f"""
1050
- <div style="
1051
- border-radius: 12px;
1052
- background-color: {rgba};
1053
- padding: 10px;
1054
- text-align: center;
1055
- color: #006EC0;
1056
- ">
1057
- <p style="margin: 0; font-size: 20px;">ROI: {round(roi_current,1)}</p>
1058
- <p style="margin: 0; font-size: 20px;">Marginal ROI: {round(marginal_roi_current,1)}</p>
1059
- </div>
1060
- """,
1061
- unsafe_allow_html=True,
1062
- )
1063
-
1064
- with st.expander("See Response Curves"):
1065
- fig = plot_response_curves()
1066
- st.plotly_chart(fig, use_container_width=True)
1067
-
1068
- _columns = st.columns(2)
1069
- with _columns[0]:
1070
- st.subheader("Save Scenario")
1071
- scenario_name = st.text_input(
1072
- "Scenario name",
1073
- key="scenario_input",
1074
- placeholder="Scenario name",
1075
- label_visibility="collapsed",
1076
- )
1077
- st.button(
1078
- "Save",
1079
- on_click=lambda: save_scenario(scenario_name),
1080
- disabled=len(st.session_state["scenario_input"]) == 0,
1081
- )
1082
-
1083
- summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
1084
- summary_df.drop_duplicates(
1085
- subset="Channel_name", keep="last", inplace=True
1086
- )
1087
-
1088
- summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
1089
- summary_df_sorted["Delta_percent"] = np.round(
1090
- (
1091
- (
1092
- summary_df_sorted["Optimized_spend"]
1093
- / summary_df_sorted["Actual_spend"]
1094
- )
1095
- - 1
1096
- )
1097
- * 100,
1098
- 2,
1099
- )
1100
-
1101
- with open("summary_df.pkl", "wb") as f:
1102
- pickle.dump(summary_df_sorted, f)
1103
- # st.dataframe(summary_df_sorted)
1104
- # ___columns=st.columns(3)
1105
- # with ___columns[2]:
1106
- # fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent')
1107
- # st.plotly_chart(fig,use_container_width=True)
1108
- # with ___columns[0]:
1109
- # fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend')
1110
- # st.plotly_chart(fig,use_container_width=True)
1111
- # with ___columns[1]:
1112
- # fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend')
1113
- # st.plotly_chart(fig,use_container_width=True)
1114
-
1115
- elif auth_status == False:
1116
- st.error("Username/Password is incorrect")
1117
-
1118
- if auth_status != True:
1119
- try:
1120
- username_forgot_pw, email_forgot_password, random_password = (
1121
- authenticator.forgot_password("Forgot password")
1122
- )
1123
- if username_forgot_pw:
1124
- st.session_state["config"]["credentials"]["usernames"][
1125
- username_forgot_pw
1126
- ]["password"] = stauth.Hasher([random_password]).generate()[0]
1127
- send_email(email_forgot_password, random_password)
1128
- st.success("New password sent securely")
1129
- # Random password to be transferred to user securely
1130
- elif username_forgot_pw == False:
1131
- st.error("Username not found")
1132
- except Exception as e:
1133
- st.error(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/9_Saved_Scenarios.py DELETED
@@ -1,276 +0,0 @@
1
- import streamlit as st
2
- from numerize.numerize import numerize
3
- import io
4
- import pandas as pd
5
- from utilities import (format_numbers,decimal_formater,
6
- channel_name_formating,
7
- load_local_css,set_header,
8
- initialize_data,
9
- load_authenticator)
10
- from openpyxl import Workbook
11
- from openpyxl.styles import Alignment,Font,PatternFill
12
- import pickle
13
- import streamlit_authenticator as stauth
14
- import yaml
15
- from yaml import SafeLoader
16
- from classes import class_from_dict
17
-
18
- st.set_page_config(layout='wide')
19
- load_local_css('styles.css')
20
- set_header()
21
-
22
- # for k, v in st.session_state.items():
23
- # if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
24
- # st.session_state[k] = v
25
-
26
- def create_scenario_summary(scenario_dict):
27
- summary_rows = []
28
- for channel_dict in scenario_dict['channels']:
29
- name_mod = channel_name_formating(channel_dict['name'])
30
- summary_rows.append([name_mod,
31
- channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
32
- channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'),
33
- channel_dict.get('actual_total_sales') ,
34
- channel_dict.get('modified_total_sales'),
35
- channel_dict.get('actual_total_sales') / (channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate')),
36
- channel_dict.get('modified_total_sales') / (channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate')),
37
- channel_dict.get('actual_mroi'),
38
- channel_dict.get('modified_mroi'),
39
- channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'),
40
- channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales')])
41
-
42
- summary_rows.append(['Total',
43
- scenario_dict.get('actual_total_spends'),
44
- scenario_dict.get('modified_total_spends'),
45
- scenario_dict.get('actual_total_sales'),
46
- scenario_dict.get('modified_total_sales'),
47
- scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'),
48
- scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
49
- '-',
50
- '-',
51
- scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'),
52
- scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')])
53
-
54
- columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
55
- columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','NRPU','ROI','MROI','Spend per NRPU'],['Actual','Simulated']], names=["first", "second"]))
56
- return pd.DataFrame(summary_rows, columns=columns_index)
57
-
58
-
59
-
60
- def summary_df_to_worksheet(df, ws):
61
- heading_fill = PatternFill(fill_type='solid',start_color='FF11B6BD',end_color='FF11B6BD')
62
- for j,header in enumerate(df.columns.values):
63
- col = j + 1
64
- for i in range(1,3):
65
- ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='FF11B6BD')
66
- ws.cell(row=i,column=j+1).fill = heading_fill
67
- if col > 1 and (col - 6)%5==0:
68
- ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
69
- ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
70
- for i,row in enumerate(df.itertuples()):
71
- for j,value in enumerate(row):
72
- if j == 0:
73
- continue
74
- elif (j-2)%4 == 0 or (j-3)%4 == 0:
75
- ws.cell(row=i+3, column = j, value=value).number_format = '$#,##0.0'
76
- else:
77
- ws.cell(row=i+3, column = j, value=value)
78
-
79
- from openpyxl.utils import get_column_letter
80
- from openpyxl.styles import Font, PatternFill
81
- import logging
82
-
83
- def scenario_df_to_worksheet(df, ws):
84
- heading_fill = PatternFill(start_color='FF11B6BD', end_color='FF11B6BD', fill_type='solid')
85
-
86
- for j, header in enumerate(df.columns.values):
87
- cell = ws.cell(row=1, column=j + 1, value=header)
88
- cell.font = Font(bold=True, color='FF11B6BD')
89
- cell.fill = heading_fill
90
-
91
- for i, row in enumerate(df.itertuples()):
92
- for j, value in enumerate(row[1:], start=1): # Start from index 1 to skip the index column
93
- try:
94
- cell = ws.cell(row=i + 2, column=j, value=value)
95
- if isinstance(value, (int, float)):
96
- cell.number_format = '$#,##0.0'
97
- elif isinstance(value, str):
98
- cell.value = value[:32767]
99
- else:
100
- cell.value = str(value)
101
- except ValueError as e:
102
- logging.error(f"Error assigning value '{value}' to cell {get_column_letter(j)}{i+2}: {e}")
103
- cell.value = None # Assign None to the cell where the error occurred
104
-
105
- return ws
106
-
107
-
108
-
109
-
110
-
111
-
112
- def download_scenarios():
113
- """
114
- Makes a excel with all saved scenarios and saves it locally
115
- """
116
- ## create summary page
117
- if len(scenarios_to_download) == 0:
118
- return
119
- wb = Workbook()
120
- wb.iso_dates = True
121
- wb.remove(wb.active)
122
- st.session_state['xlsx_buffer'] = io.BytesIO()
123
- summary_df = None
124
- #print(scenarios_to_download)
125
- for scenario_name in scenarios_to_download:
126
- scenario_dict = st.session_state['saved_scenarios'][scenario_name]
127
- _spends = []
128
- column_names = ['Date']
129
- _sales = None
130
- dates = None
131
- summary_rows = []
132
- for channel in scenario_dict['channels']:
133
- if dates is None:
134
- dates = channel.get('dates')
135
- _spends.append(dates)
136
- if _sales is None:
137
- _sales = channel.get('modified_sales')
138
- else:
139
- _sales += channel.get('modified_sales')
140
- _spends.append(channel.get('modified_spends') * channel.get('conversion_rate'))
141
- column_names.append(channel.get('name'))
142
-
143
- name_mod = channel_name_formating(channel['name'])
144
- summary_rows.append([name_mod,
145
- channel.get('modified_total_spends') * channel.get('conversion_rate') ,
146
- channel.get('modified_total_sales'),
147
- channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate'),
148
- channel.get('modified_mroi'),
149
- channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate')])
150
- _spends.append(_sales)
151
- column_names.append('NRPU')
152
- scenario_df = pd.DataFrame(_spends).T
153
- scenario_df.columns = column_names
154
- ## write to sheet
155
- ws = wb.create_sheet(scenario_name)
156
- scenario_df_to_worksheet(scenario_df, ws)
157
- summary_rows.append(['Total',
158
- scenario_dict.get('modified_total_spends') ,
159
- scenario_dict.get('modified_total_sales'),
160
- scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
161
- '-',
162
- scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')])
163
- columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
164
- columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','NRPU','ROI','MROI','Spends per NRPU']], names=["first", "second"]))
165
- if summary_df is None:
166
- summary_df = pd.DataFrame(summary_rows, columns = columns_index)
167
- summary_df = summary_df.set_index(('','Channel'))
168
- else:
169
- _df = pd.DataFrame(summary_rows, columns = columns_index)
170
- _df = _df.set_index(('','Channel'))
171
- summary_df = summary_df.merge(_df, left_index=True, right_index=True)
172
- ws = wb.create_sheet('Summary',0)
173
- summary_df_to_worksheet(summary_df.reset_index(), ws)
174
- wb.save(st.session_state['xlsx_buffer'])
175
- st.session_state['disable_download_button'] = False
176
-
177
- def disable_download_button():
178
- st.session_state['disable_download_button'] =True
179
-
180
- def transform(x):
181
- if x.name == ("",'Channel'):
182
- return x
183
- elif x.name[0] == 'ROI' or x.name[0] == 'MROI':
184
- return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=4),n_decimals=4))
185
- else:
186
- return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))
187
-
188
- def delete_scenario():
189
- if selected_scenario in st.session_state['saved_scenarios']:
190
- del st.session_state['saved_scenarios'][selected_scenario]
191
- with open('../saved_scenarios.pkl', 'wb') as f:
192
- pickle.dump(st.session_state['saved_scenarios'],f)
193
-
194
- def load_scenario():
195
- if selected_scenario in st.session_state['saved_scenarios']:
196
- st.session_state['scenario'] = class_from_dict(selected_scenario_details)
197
-
198
-
199
-
200
- authenticator = st.session_state.get('authenticator')
201
- if authenticator is None:
202
- authenticator = load_authenticator()
203
-
204
- name, authentication_status, username = authenticator.login('Login', 'main')
205
- auth_status = st.session_state.get('authentication_status')
206
-
207
- if auth_status == True:
208
- is_state_initiaized = st.session_state.get('initialized',False)
209
- if not is_state_initiaized:
210
- #print("Scenario page state reloaded")
211
- initialize_data()
212
-
213
-
214
- saved_scenarios = st.session_state['saved_scenarios']
215
-
216
-
217
- if len(saved_scenarios) ==0:
218
- st.header('No saved scenarios')
219
-
220
- else:
221
-
222
- with st.sidebar:
223
- selected_scenario = st.radio(
224
- 'Pick a scenario to view details',
225
- list(saved_scenarios.keys())
226
- )
227
- st.markdown("""<hr>""", unsafe_allow_html=True)
228
- scenarios_to_download = st.multiselect('Select scenarios to download',
229
- list(saved_scenarios.keys()))
230
-
231
- st.button('Prepare download',on_click=download_scenarios)
232
- st.download_button(
233
- label="Download Scenarios",
234
- data=st.session_state['xlsx_buffer'].getvalue(),
235
- file_name="scenarios.xlsx",
236
- mime="application/vnd.ms-excel",
237
- disabled= st.session_state['disable_download_button'],
238
- on_click= disable_download_button
239
- )
240
-
241
- column_1, column_2,column_3 = st.columns((6,1,1))
242
- with column_1:
243
- st.header(selected_scenario)
244
- with column_2:
245
- st.button('Delete scenarios', on_click=delete_scenario)
246
- with column_3:
247
- st.button('Load Scenario', on_click=load_scenario)
248
-
249
- selected_scenario_details = saved_scenarios[selected_scenario]
250
-
251
- pd.set_option('display.max_colwidth', 100)
252
-
253
- st.markdown(create_scenario_summary(selected_scenario_details).transform(transform).style.set_table_styles(
254
- [{
255
- 'selector': 'th',
256
- 'props': [('background-color', '#11B6BD')]
257
- },
258
- {
259
- 'selector' : 'tr:nth-child(even)',
260
- 'props' : [('background-color', '#11B6BD')]
261
- }
262
- ]).to_html(),unsafe_allow_html=True)
263
-
264
- elif auth_status == False:
265
- st.error('Username/Password is incorrect')
266
-
267
- if auth_status != True:
268
- try:
269
- username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
270
- if username_forgot_pw:
271
- st.success('New password sent securely')
272
- # Random password to be transferred to user securely
273
- elif username_forgot_pw == False:
274
- st.error('Username not found')
275
- except Exception as e:
276
- st.error(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/Data_Import.py DELETED
@@ -1,891 +0,0 @@
1
- # Importing necessary libraries
2
- import streamlit as st
3
-
4
- st.set_page_config(
5
- page_title="Model Build",
6
- page_icon=":shark:",
7
- layout="wide",
8
- initial_sidebar_state="collapsed",
9
- )
10
-
11
- import numpy as np
12
- import pandas as pd
13
- from utilities import set_header, load_local_css, load_authenticator
14
- import pickle
15
-
16
-
17
- load_local_css("styles.css")
18
- set_header()
19
-
20
- authenticator = st.session_state.get("authenticator")
21
- if authenticator is None:
22
- authenticator = load_authenticator()
23
-
24
- name, authentication_status, username = authenticator.login("Login", "main")
25
- auth_status = st.session_state.get("authentication_status")
26
-
27
- # Check for authentication status
28
- if auth_status != True:
29
- st.stop()
30
-
31
-
32
- # Function to validate date column in dataframe
33
- def validate_date_column(df):
34
- try:
35
- # Attempt to convert the 'Date' column to datetime
36
- df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
37
- return True
38
- except:
39
- return False
40
-
41
-
42
- # Function to determine data interval
43
- def determine_data_interval(common_freq):
44
- if common_freq == 1:
45
- return "daily"
46
- elif common_freq == 7:
47
- return "weekly"
48
- elif 28 <= common_freq <= 31:
49
- return "monthly"
50
- else:
51
- return "irregular"
52
-
53
-
54
- # Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
55
- st.cache_resource(show_spinner=False)
56
-
57
-
58
- def files_to_dataframes(uploaded_files):
59
- df_dict = {}
60
- for uploaded_file in uploaded_files:
61
- # Extract file name without extension
62
- file_name = uploaded_file.name.rsplit(".", 1)[0]
63
-
64
- # Check for duplicate file names
65
- if file_name in df_dict:
66
- st.warning(
67
- f"Duplicate File: {file_name}. This file will be skipped.",
68
- icon="⚠️",
69
- )
70
- continue
71
-
72
- # Read the file into a DataFrame
73
- df = pd.read_excel(uploaded_file)
74
-
75
- # Convert all column names to lowercase
76
- df.columns = df.columns.str.lower().str.strip()
77
-
78
- # Separate numeric and non-numeric columns
79
- numeric_cols = list(df.select_dtypes(include=["number"]).columns)
80
- non_numeric_cols = [
81
- col
82
- for col in df.select_dtypes(exclude=["number"]).columns
83
- if col.lower() != "date"
84
- ]
85
-
86
- # Check for 'Date' column
87
- if not (validate_date_column(df) and len(numeric_cols) > 0):
88
- st.warning(
89
- f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
90
- icon="⚠️",
91
- )
92
- continue
93
-
94
- # Check for interval
95
- common_freq = common_freq = (
96
- pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
97
- )
98
- # Calculate the data interval (daily, weekly, monthly or irregular)
99
- interval = determine_data_interval(common_freq)
100
- if interval == "irregular":
101
- st.warning(
102
- f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
103
- icon="⚠️",
104
- )
105
- continue
106
-
107
- # Store both DataFrames in the dictionary under their respective keys
108
- df_dict[file_name] = {
109
- "numeric": numeric_cols,
110
- "non_numeric": non_numeric_cols,
111
- "interval": interval,
112
- "df": df,
113
- }
114
-
115
- return df_dict
116
-
117
-
118
- # Function to adjust dataframe granularity
119
- # def adjust_dataframe_granularity(df, current_granularity, target_granularity):
120
- # # Set index
121
- # df.set_index("date", inplace=True)
122
-
123
- # # Define aggregation rules for resampling
124
- # aggregation_rules = {
125
- # col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
126
- # for col in df.columns
127
- # }
128
-
129
- # resampled_df = df
130
- # if current_granularity == "daily" and target_granularity == "weekly":
131
- # resampled_df = df.resample("W-MON").agg(aggregation_rules)
132
-
133
- # elif current_granularity == "daily" and target_granularity == "monthly":
134
- # resampled_df = df.resample("MS").agg(aggregation_rules)
135
-
136
- # elif current_granularity == "daily" and target_granularity == "daily":
137
- # resampled_df = df.resample("D").agg(aggregation_rules)
138
-
139
- # elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
140
- # # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
141
- # expanded_data = []
142
- # for _, row in df.iterrows():
143
- # if current_granularity == "weekly":
144
- # period_range = pd.date_range(start=row.name, periods=7)
145
- # elif current_granularity == "monthly":
146
- # period_range = pd.date_range(
147
- # start=row.name, periods=row.name.days_in_month
148
- # )
149
-
150
- # for date in period_range:
151
- # new_row = {}
152
- # for col in df.columns:
153
- # if pd.api.types.is_numeric_dtype(df[col]):
154
- # if current_granularity == "weekly":
155
- # new_row[col] = row[col] / 7
156
- # elif current_granularity == "monthly":
157
- # new_row[col] = row[col] / row.name.days_in_month
158
- # else:
159
- # new_row[col] = row[col]
160
- # expanded_data.append((date, new_row))
161
-
162
- # resampled_df = pd.DataFrame(
163
- # [data for _, data in expanded_data],
164
- # index=[date for date, _ in expanded_data],
165
- # )
166
-
167
- # # Reset index
168
- # resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
169
-
170
- # return resampled_df
171
-
172
-
173
- def adjust_dataframe_granularity(df, current_granularity, target_granularity):
174
- # Set index
175
- df.set_index("date", inplace=True)
176
-
177
- # Define aggregation rules for resampling
178
- aggregation_rules = {
179
- col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
180
- for col in df.columns
181
- }
182
-
183
- # Initialize resampled_df
184
- resampled_df = df
185
- if current_granularity == "daily" and target_granularity == "weekly":
186
- resampled_df = df.resample("W-MON", closed="left", label="left").agg(
187
- aggregation_rules
188
- )
189
-
190
- elif current_granularity == "daily" and target_granularity == "monthly":
191
- resampled_df = df.resample("MS", closed="left", label="left").agg(
192
- aggregation_rules
193
- )
194
-
195
- elif current_granularity == "daily" and target_granularity == "daily":
196
- resampled_df = df.resample("D").agg(aggregation_rules)
197
-
198
- elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
199
- # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
200
- expanded_data = []
201
- for _, row in df.iterrows():
202
- if current_granularity == "weekly":
203
- period_range = pd.date_range(start=row.name, periods=7)
204
- elif current_granularity == "monthly":
205
- period_range = pd.date_range(
206
- start=row.name, periods=row.name.days_in_month
207
- )
208
-
209
- for date in period_range:
210
- new_row = {}
211
- for col in df.columns:
212
- if pd.api.types.is_numeric_dtype(df[col]):
213
- if current_granularity == "weekly":
214
- new_row[col] = row[col] / 7
215
- elif current_granularity == "monthly":
216
- new_row[col] = row[col] / row.name.days_in_month
217
- else:
218
- new_row[col] = row[col]
219
- expanded_data.append((date, new_row))
220
-
221
- resampled_df = pd.DataFrame(
222
- [data for _, data in expanded_data],
223
- index=[date for date, _ in expanded_data],
224
- )
225
-
226
- # Reset index
227
- resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
228
-
229
- return resampled_df
230
-
231
-
232
- # Function to clean and extract unique values of DMA and Panel
233
- st.cache_resource(show_spinner=False)
234
-
235
-
236
- def clean_and_extract_unique_values(files_dict, selections):
237
- all_dma_values = set()
238
- all_panel_values = set()
239
-
240
- for file_name, file_data in files_dict.items():
241
- df = file_data["df"]
242
-
243
- # 'DMA' and 'Panel' selections
244
- selected_dma = selections[file_name].get("DMA")
245
- selected_panel = selections[file_name].get("Panel")
246
-
247
- # Clean and standardize DMA column if it exists and is selected
248
- if selected_dma and selected_dma != "N/A" and selected_dma in df.columns:
249
- df[selected_dma] = (
250
- df[selected_dma].str.lower().str.strip().str.replace("_", " ")
251
- )
252
- all_dma_values.update(df[selected_dma].dropna().unique())
253
-
254
- # Clean and standardize Panel column if it exists and is selected
255
- if selected_panel and selected_panel != "N/A" and selected_panel in df.columns:
256
- df[selected_panel] = (
257
- df[selected_panel].str.lower().str.strip().str.replace("_", " ")
258
- )
259
- all_panel_values.update(df[selected_panel].dropna().unique())
260
-
261
- # Update the processed DataFrame back in the dictionary
262
- files_dict[file_name]["df"] = df
263
-
264
- return all_dma_values, all_panel_values
265
-
266
-
267
- # Function to format values for display
268
- st.cache_resource(show_spinner=False)
269
-
270
-
271
- def format_values_for_display(values_list):
272
- # Capitalize the first letter of each word and replace underscores with spaces
273
- formatted_list = [value.replace("_", " ").title() for value in values_list]
274
- # Join values with commas and 'and' before the last value
275
- if len(formatted_list) > 1:
276
- return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
277
- elif formatted_list:
278
- return formatted_list[0]
279
- return "No values available"
280
-
281
-
282
- # Function to normalizes all data within files_dict to a daily granularity
283
- st.cache(show_spinner=False, allow_output_mutation=True)
284
-
285
-
286
- def standardize_data_to_daily(files_dict, selections):
287
- # Normalize all data to a daily granularity using a provided function
288
- files_dict = apply_granularity_to_all(files_dict, "daily", selections)
289
-
290
- # Update the "interval" attribute for each dataset to indicate the new granularity
291
- for files_name, files_data in files_dict.items():
292
- files_data["interval"] = "daily"
293
-
294
- return files_dict
295
-
296
-
297
- # Function to apply granularity transformation to all DataFrames in files_dict
298
- st.cache_resource(show_spinner=False)
299
-
300
-
301
- def apply_granularity_to_all(files_dict, granularity_selection, selections):
302
- for file_name, file_data in files_dict.items():
303
- df = file_data["df"].copy()
304
-
305
- # Handling when DMA or Panel might be 'N/A'
306
- selected_dma = selections[file_name].get("DMA")
307
- selected_panel = selections[file_name].get("Panel")
308
-
309
- # Correcting the segment selection logic & handling 'N/A'
310
- if selected_dma != "N/A" and selected_panel != "N/A":
311
- unique_combinations = df[[selected_dma, selected_panel]].drop_duplicates()
312
- elif selected_dma != "N/A":
313
- unique_combinations = df[[selected_dma]].drop_duplicates()
314
- selected_panel = None # Ensure Panel is ignored if N/A
315
- elif selected_panel != "N/A":
316
- unique_combinations = df[[selected_panel]].drop_duplicates()
317
- selected_dma = None # Ensure DMA is ignored if N/A
318
- else:
319
- # If both are 'N/A', process the entire dataframe as is
320
- df = adjust_dataframe_granularity(
321
- df, file_data["interval"], granularity_selection
322
- )
323
- files_dict[file_name]["df"] = df
324
- continue # Skip to the next file
325
-
326
- transformed_segments = []
327
- for _, combo in unique_combinations.iterrows():
328
- if selected_dma and selected_panel:
329
- segment = df[
330
- (df[selected_dma] == combo[selected_dma])
331
- & (df[selected_panel] == combo[selected_panel])
332
- ]
333
- elif selected_dma:
334
- segment = df[df[selected_dma] == combo[selected_dma]]
335
- elif selected_panel:
336
- segment = df[df[selected_panel] == combo[selected_panel]]
337
-
338
- # Adjust granularity of the segment
339
- transformed_segment = adjust_dataframe_granularity(
340
- segment, file_data["interval"], granularity_selection
341
- )
342
- transformed_segments.append(transformed_segment)
343
-
344
- # Combine all transformed segments into a single DataFrame for this file
345
- transformed_df = pd.concat(transformed_segments, ignore_index=True)
346
- files_dict[file_name]["df"] = transformed_df
347
-
348
- return files_dict
349
-
350
-
351
- # Function to create main dataframe structure
352
- st.cache_resource(show_spinner=False)
353
-
354
-
355
- def create_main_dataframe(
356
- files_dict, all_dma_values, all_panel_values, granularity_selection
357
- ):
358
- # Determine the global start and end dates across all DataFrames
359
- global_start = min(df["df"]["date"].min() for df in files_dict.values())
360
- global_end = max(df["df"]["date"].max() for df in files_dict.values())
361
-
362
- # Adjust the date_range generation based on the granularity_selection
363
- if granularity_selection == "weekly":
364
- # Generate a weekly range, with weeks starting on Monday
365
- date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
366
- elif granularity_selection == "monthly":
367
- # Generate a monthly range, starting from the first day of each month
368
- date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
369
- else: # Default to daily if not weekly or monthly
370
- date_range = pd.date_range(start=global_start, end=global_end, freq="D")
371
-
372
- # Collect all unique DMA and Panel values, excluding 'N/A'
373
- all_dmas = all_dma_values
374
- all_panels = all_panel_values
375
-
376
- # Dynamically build the list of dimensions (Panel, DMA) to include in the main DataFrame based on availability
377
- dimensions, merge_keys = [], []
378
- if all_panels:
379
- dimensions.append(all_panels)
380
- merge_keys.append("Panel")
381
- if all_dmas:
382
- dimensions.append(all_dmas)
383
- merge_keys.append("DMA")
384
-
385
- dimensions.append(date_range) # Date range is always included
386
- merge_keys.append("date") # Date range is always included
387
-
388
- # Create a main DataFrame template with the dimensions
389
- main_df = pd.MultiIndex.from_product(
390
- dimensions,
391
- names=[name for name, _ in zip(merge_keys, dimensions)],
392
- ).to_frame(index=False)
393
-
394
- return main_df.reset_index(drop=True)
395
-
396
-
397
- # Function to prepare and merge dataFrames
398
- st.cache_resource(show_spinner=False)
399
-
400
-
401
- def merge_into_main_df(main_df, files_dict, selections):
402
- for file_name, file_data in files_dict.items():
403
- df = file_data["df"].copy()
404
-
405
- # Rename selected DMA and Panel columns if not 'N/A'
406
- selected_dma = selections[file_name].get("DMA", "N/A")
407
- selected_panel = selections[file_name].get("Panel", "N/A")
408
- if selected_dma != "N/A":
409
- df.rename(columns={selected_dma: "DMA"}, inplace=True)
410
- if selected_panel != "N/A":
411
- df.rename(columns={selected_panel: "Panel"}, inplace=True)
412
-
413
- # Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel' and 'DMA'
414
- merge_keys = ["date"]
415
- if "Panel" in df.columns:
416
- merge_keys.append("Panel")
417
- if "DMA" in df.columns:
418
- merge_keys.append("DMA")
419
- main_df = pd.merge(main_df, df, on=merge_keys, how="left")
420
-
421
- # After all merges, sort by 'date' and reset index for cleanliness
422
- sort_by = ["date"]
423
- if "Panel" in main_df.columns:
424
- sort_by.append("Panel")
425
- if "DMA" in main_df.columns:
426
- sort_by.append("DMA")
427
- main_df.sort_values(by=sort_by, inplace=True)
428
- main_df.reset_index(drop=True, inplace=True)
429
-
430
- return main_df
431
-
432
-
433
- # Function to categorize column
434
- def categorize_column(column_name):
435
- # Define keywords for each category
436
- internal_keywords = [
437
- "Price",
438
- "Discount",
439
- "product_price",
440
- "cost",
441
- "margin",
442
- "inventory",
443
- "sales",
444
- "revenue",
445
- "turnover",
446
- "expense",
447
- ]
448
- exogenous_keywords = [
449
- "GDP",
450
- "Tax",
451
- "Inflation",
452
- "interest_rate",
453
- "employment_rate",
454
- "exchange_rate",
455
- "consumer_spending",
456
- "retail_sales",
457
- "oil_prices",
458
- "weather",
459
- ]
460
-
461
- # Check if the column name matches any of the keywords for Internal or Exogenous categories
462
- for keyword in internal_keywords:
463
- if keyword.lower() in column_name.lower():
464
- return "Internal"
465
- for keyword in exogenous_keywords:
466
- if keyword.lower() in column_name.lower():
467
- return "Exogenous"
468
-
469
- # Default to Media if no match found
470
- return "Media"
471
-
472
-
473
- # Function to calculate missing stats and prepare for editable DataFrame
474
- st.cache_resource(show_spinner=False)
475
-
476
-
477
- def prepare_missing_stats_df(df):
478
- missing_stats = []
479
- for column in df.columns:
480
- if (
481
- column == "date" or column == "DMA" or column == "Panel"
482
- ): # Skip Date, DMA and Panel column
483
- continue
484
-
485
- missing = df[column].isnull().sum()
486
- pct_missing = round((missing / len(df)) * 100, 2)
487
-
488
- # Dynamically assign category based on column name
489
- # category = categorize_column(column)
490
- category = "Media"
491
-
492
- missing_stats.append(
493
- {
494
- "Column": column,
495
- "Missing Values": missing,
496
- "Missing Percentage": pct_missing,
497
- "Impute Method": "Fill with 0", # Default value
498
- "Category": category,
499
- }
500
- )
501
- stats_df = pd.DataFrame(missing_stats)
502
-
503
- return stats_df
504
-
505
-
506
- # Function to add API DataFrame details to the files dictionary
507
- st.cache_resource(show_spinner=False)
508
-
509
-
510
- def add_api_dataframe_to_dict(main_df, files_dict):
511
- files_dict["API"] = {
512
- "numeric": list(main_df.select_dtypes(include=["number"]).columns),
513
- "non_numeric": [
514
- col
515
- for col in main_df.select_dtypes(exclude=["number"]).columns
516
- if col.lower() != "date"
517
- ],
518
- "interval": determine_data_interval(
519
- pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
520
- ),
521
- "df": main_df,
522
- }
523
-
524
- return files_dict
525
-
526
-
527
- # Function to reads an API into a DataFrame, parsing specified columns as datetime
528
- @st.cache_resource(show_spinner=False)
529
- def read_API_data():
530
- return pd.read_excel(r"upf_data_converted.xlsx", parse_dates=["Date"])
531
-
532
-
533
- # Function to set the 'DMA_Panel_Selected' session state variable to False
534
- def set_DMA_Panel_Selected_false():
535
- st.session_state["DMA_Panel_Selected"] = False
536
-
537
-
538
- # Initialize 'final_df' in session state
539
- if "final_df" not in st.session_state:
540
- st.session_state["final_df"] = pd.DataFrame()
541
-
542
- # Initialize 'bin_dict' in session state
543
- if "bin_dict" not in st.session_state:
544
- st.session_state["bin_dict"] = {}
545
-
546
- # Initialize 'DMA_Panel_Selected' in session state
547
- if "DMA_Panel_Selected" not in st.session_state:
548
- st.session_state["DMA_Panel_Selected"] = False
549
-
550
- # Page Title
551
- st.write("") # Top padding
552
- st.title("Data Import")
553
-
554
-
555
- #########################################################################################################################################################
556
- # Create a dictionary to hold all DataFrames and collect user input to specify "DMA" and "Panel" columns for each file
557
- #########################################################################################################################################################
558
-
559
-
560
- # Read the Excel file, parsing 'Date' column as datetime
561
- main_df = read_API_data()
562
-
563
- # Convert all column names to lowercase
564
- main_df.columns = main_df.columns.str.lower().str.strip()
565
-
566
- # File uploader
567
- uploaded_files = st.file_uploader(
568
- "Upload additional data",
569
- type=["xlsx"],
570
- accept_multiple_files=True,
571
- on_change=set_DMA_Panel_Selected_false,
572
- )
573
-
574
- # Custom HTML for upload instructions
575
- recommendation_html = f"""
576
- <div style="text-align: justify;">
577
- <strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including DMA, Panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
578
- </div>
579
- """
580
- st.markdown(recommendation_html, unsafe_allow_html=True)
581
-
582
- # Choose Date Granularity
583
- st.markdown("#### Choose Date Granularity")
584
- # Granularity Selection
585
- granularity_selection = st.selectbox(
586
- "Choose Date Granularity",
587
- ["Daily", "Weekly", "Monthly"],
588
- label_visibility="collapsed",
589
- on_change=set_DMA_Panel_Selected_false,
590
- )
591
- granularity_selection = str(granularity_selection).lower()
592
-
593
- # Convert files to dataframes
594
- files_dict = files_to_dataframes(uploaded_files)
595
-
596
- # Add API Dataframe
597
- if main_df is not None:
598
- files_dict = add_api_dataframe_to_dict(main_df, files_dict)
599
-
600
- # Display a warning message if no files have been uploaded and halt further execution
601
- if not files_dict:
602
- st.warning(
603
- "Please upload at least one file to proceed.",
604
- icon="⚠️",
605
- )
606
- st.stop() # Halts further execution until file is uploaded
607
-
608
-
609
- # Select DMA and Panel columns
610
- st.markdown("#### Select DMA and Panel columns")
611
- selections = {}
612
- with st.expander("Select DMA and Panel columns", expanded=False):
613
- count = 0 # Initialize counter to manage the visibility of labels and keys
614
- for file_name, file_data in files_dict.items():
615
- # Determine visibility of the label based on the count
616
- if count == 0:
617
- label_visibility = "visible"
618
- else:
619
- label_visibility = "collapsed"
620
-
621
- # Extract non-numeric columns
622
- non_numeric_cols = file_data["non_numeric"]
623
-
624
- # Prepare DMA and Panel values for dropdown, adding "N/A" as an option
625
- dma_values = non_numeric_cols + ["N/A"]
626
- panel_values = non_numeric_cols + ["N/A"]
627
-
628
- # Skip if only one option is available
629
- if len(dma_values) == 1 and len(panel_values) == 1:
630
- selected_dma, selected_panel = "N/A", "N/A"
631
- # Update the selections for DMA and Panel for the current file
632
- selections[file_name] = {
633
- "DMA": selected_dma,
634
- "Panel": selected_panel,
635
- }
636
- continue
637
-
638
- # Create layout columns for File Name, DMA, and Panel selections
639
- file_name_col, DMA_col, Panel_col = st.columns([2, 4, 4])
640
-
641
- with file_name_col:
642
- # Display "File Name" label only for the first file
643
- if count == 0:
644
- st.write("File Name")
645
- else:
646
- st.write("")
647
- st.write(file_name) # Display the file name
648
-
649
- with DMA_col:
650
- # Display a selectbox for DMA values
651
- selected_dma = st.selectbox(
652
- "Select DMA",
653
- dma_values,
654
- on_change=set_DMA_Panel_Selected_false,
655
- label_visibility=label_visibility, # Control visibility of the label
656
- key=f"DMA_selectbox{count}", # Ensure unique key for each selectbox
657
- )
658
-
659
- with Panel_col:
660
- # Display a selectbox for Panel values
661
- selected_panel = st.selectbox(
662
- "Select Panel",
663
- panel_values,
664
- on_change=set_DMA_Panel_Selected_false,
665
- label_visibility=label_visibility, # Control visibility of the label
666
- key=f"Panel_selectbox{count}", # Ensure unique key for each selectbox
667
- )
668
-
669
- # Skip processing if the same column is selected for both Panel and DMA due to potential data integrity issues
670
- if selected_panel == selected_dma and not (
671
- selected_panel == "N/A" and selected_dma == "N/A"
672
- ):
673
- st.warning(
674
- f"File: {file_name} → The same column cannot serve as both Panel and DMA. Please adjust your selections.",
675
- )
676
- selected_dma, selected_panel = "N/A", "N/A"
677
- st.stop()
678
-
679
- # Update the selections for DMA and Panel for the current file
680
- selections[file_name] = {
681
- "DMA": selected_dma,
682
- "Panel": selected_panel,
683
- }
684
-
685
- count += 1 # Increment the counter after processing each file
686
-
687
- # Accept DMA and Panel selection
688
- if st.button("Accept and Process", use_container_width=True):
689
-
690
- # Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
691
- with st.spinner("Processing...", cache=True):
692
- files_dict = standardize_data_to_daily(files_dict, selections)
693
-
694
- # Convert all data to daily level granularity
695
- files_dict = apply_granularity_to_all(
696
- files_dict, granularity_selection, selections
697
- )
698
-
699
- st.session_state["files_dict"] = files_dict
700
- st.session_state["DMA_Panel_Selected"] = True
701
-
702
-
703
- #########################################################################################################################################################
704
- # Display unique DMA and Panel values
705
- #########################################################################################################################################################
706
-
707
-
708
- # Halts further execution until DMA and Panel columns are selected
709
- if "files_dict" in st.session_state and st.session_state["DMA_Panel_Selected"]:
710
- files_dict = st.session_state["files_dict"]
711
- else:
712
- st.stop()
713
-
714
- # Set to store unique values of DMA and Panel
715
- with st.spinner("Fetching DMA and Panel values..."):
716
- all_dma_values, all_panel_values = clean_and_extract_unique_values(
717
- files_dict, selections
718
- )
719
-
720
- # List of DMA and Panel columns unique values
721
- list_of_all_dma_values = list(all_dma_values)
722
- list_of_all_panel_values = list(all_panel_values)
723
-
724
- # Format DMA and Panel values for display
725
- formatted_dma_values = format_values_for_display(list_of_all_dma_values)
726
- formatted_panel_values = format_values_for_display(list_of_all_panel_values)
727
-
728
- # Unique DMA and Panel values
729
- st.markdown("#### Unique DMA and Panel values")
730
- # Display DMA and Panel values
731
- with st.expander("Unique DMA and Panel values"):
732
- st.write("")
733
- st.markdown(
734
- f"""
735
- <style>
736
- .justify-text {{
737
- text-align: justify;
738
- }}
739
- </style>
740
- <div class="justify-text">
741
- <strong>Panel Values:</strong> {formatted_panel_values}<br>
742
- <strong>DMA Values:</strong> {formatted_dma_values}
743
- </div>
744
- """,
745
- unsafe_allow_html=True,
746
- )
747
-
748
- # Display total DMA and Panel
749
- st.write("")
750
- st.markdown(
751
- f"""
752
- <div style="text-align: justify;">
753
- <strong>Number of DMAs detected:</strong> {len(list_of_all_dma_values)}<br>
754
- <strong>Number of Panels detected:</strong> {len(list_of_all_panel_values)}
755
- </div>
756
- """,
757
- unsafe_allow_html=True,
758
- )
759
- st.write("")
760
-
761
-
762
- #########################################################################################################################################################
763
- # Merge all DataFrames
764
- #########################################################################################################################################################
765
-
766
-
767
- # Merge all DataFrames selected
768
- main_df = create_main_dataframe(
769
- files_dict, all_dma_values, all_panel_values, granularity_selection
770
- )
771
- merged_df = merge_into_main_df(main_df, files_dict, selections)
772
-
773
- # # Display the merged DataFrame
774
- # st.markdown("#### Merged DataFrame based on selected DMA and Panel")
775
- # st.dataframe(merged_df)
776
-
777
-
778
- #########################################################################################################################################################
779
- # Categorize Variables and Impute Missing Values
780
- #########################################################################################################################################################
781
-
782
-
783
- # Create an editable DataFrame in Streamlit
784
- st.markdown("#### Select Variables Category & Impute Missing Values")
785
-
786
- # Prepare missing stats DataFrame for editing
787
- missing_stats_df = prepare_missing_stats_df(merged_df)
788
-
789
- edited_stats_df = st.data_editor(
790
- missing_stats_df,
791
- column_config={
792
- "Impute Method": st.column_config.SelectboxColumn(
793
- options=[
794
- "Drop Column",
795
- "Fill with Mean",
796
- "Fill with Median",
797
- "Fill with 0",
798
- ],
799
- required=True,
800
- default="Fill with 0",
801
- ),
802
- "Category": st.column_config.SelectboxColumn(
803
- options=[
804
- "Media",
805
- "Exogenous",
806
- "Internal",
807
- "Response_Metric"
808
- ],
809
- required=True,
810
- default="Media",
811
- ),
812
- },
813
- disabled=["Column", "Missing Values", "Missing Percentage"],
814
- hide_index=True,
815
- use_container_width=True,
816
- )
817
-
818
- # Apply changes based on edited DataFrame
819
- for i, row in edited_stats_df.iterrows():
820
- column = row["Column"]
821
- if row["Impute Method"] == "Drop Column":
822
- merged_df.drop(columns=[column], inplace=True)
823
-
824
- elif row["Impute Method"] == "Fill with Mean":
825
- merged_df[column].fillna(merged_df[column].mean(), inplace=True)
826
-
827
- elif row["Impute Method"] == "Fill with Median":
828
- merged_df[column].fillna(merged_df[column].median(), inplace=True)
829
-
830
- elif row["Impute Method"] == "Fill with 0":
831
- merged_df[column].fillna(0, inplace=True)
832
-
833
- # Display the Final DataFrame and exogenous variables
834
- st.markdown("#### Final DataFrame")
835
- final_df = merged_df
836
- st.dataframe(final_df, hide_index=True)
837
-
838
- # Initialize an empty dictionary to hold categories and their variables
839
- category_dict = {}
840
-
841
- # Iterate over each row in the edited DataFrame to populate the dictionary
842
- for i, row in edited_stats_df.iterrows():
843
- column = row["Column"]
844
- category = row["Category"] # The category chosen by the user for this variable
845
-
846
- # Check if the category already exists in the dictionary
847
- if category not in category_dict:
848
- # If not, initialize it with the current column as its first element
849
- category_dict[category] = [column]
850
- else:
851
- # If it exists, append the current column to the list of variables under this category
852
- category_dict[category].append(column)
853
-
854
- # Add Date, DMA and Panel in category dictionary
855
- category_dict.update({"Date": ["date"]})
856
- if "DMA" in final_df.columns:
857
- category_dict["DMA"] = ["DMA"]
858
-
859
- if "Panel" in final_df.columns:
860
- category_dict["Panel"] = ["Panel"]
861
-
862
- # Display the dictionary
863
- st.markdown("#### Variable Category")
864
- for category, variables in category_dict.items():
865
- # Check if there are multiple variables to handle "and" insertion correctly
866
- if len(variables) > 1:
867
- # Join all but the last variable with ", ", then add " and " before the last variable
868
- variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
869
- else:
870
- # If there's only one variable, no need for "and"
871
- variables_str = variables[0]
872
-
873
- # Display the category and its variables in the desired format
874
- st.markdown(
875
- f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
876
- unsafe_allow_html=True,
877
- )
878
-
879
- # Store final dataframe and bin dictionary into session state
880
- st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
881
-
882
- if st.button('Save Changes'):
883
-
884
- with open("Pickle_files/main_df", 'wb') as f:
885
- pickle.dump(st.session_state["final_df"], f)
886
- with open("Pickle_files/category_dict",'wb') as c:
887
- pickle.dump(st.session_state["bin_dict"],c)
888
- st.success('Changes Saved!')
889
-
890
-
891
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/actual_data.csv DELETED
@@ -1,158 +0,0 @@
1
- const,clicks_search_decay.2,impressions_tv_lag3,online_edu_trend_lag3,clicks_digital_lag2_decay.3,impressions_streaming_lag2_decay.4,covid_cases_lag3,unemployement_rate_lead4,season,flag_Aug_1,flag_Aug_2,flag_Aug_3,flag_dec_1,flag_dec_-1,flag_dec_-2,flag_dec_-3,flag_easter_-1,flag_easter_-2,flag_may_-1,flag_may_-2,flag_jun_-1,flag_jun_-2,covid_flag1,flag_june28,flag_aug13,flag_sep13,flag_mar_feb,date,total_prospect_id
2
- 1.0,0.03264506089026503,0.0,0.0,0.0,0.11920857922376585,0.0,0.2448979591836735,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-11-10,3106
3
- 1.0,0.1203178311529351,0.0,0.0,0.0,0.23575959332216032,0.0,0.2448979591836735,101,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-11-17,7809
4
- 1.0,0.037674240888288246,0.0,0.0,0.30427286753070926,0.14866425214344534,0.0,0.2448979591836735,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-11-24,5658
5
- 1.0,0.114056065999327,0.25459834519940233,0.5700000000000001,0.3210660307498862,0.06375317695001911,0.0,0.2448979591836735,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-01,7528
6
- 1.0,0.15091848146432302,0.04759636387261456,0.58,0.2652143429433443,0.02550166207848893,0.0,0.2380952380952381,104,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-08,8913
7
- 1.0,0.09691798534505919,0.0,0.41000000000000003,0.27398476053158455,0.22803554179688423,0.0,0.2380952380952381,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-15,7974
8
- 1.0,0.0,0.2185391903071715,0.53,0.3093665823461814,0.3016670242357716,0.0,0.2380952380952381,106,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-22,5034
9
- 1.0,0.06818143419410627,0.0645557652165116,0.6,0.35005256364095544,0.3915886857834677,0.0,0.2380952380952381,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-29,8296
10
- 1.0,0.19748095587743647,0.0,0.49,0.2866388037412839,0.4644891817948484,0.0,0.2380952380952381,108,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-01-05,10953
11
- 1.0,0.2718903484441833,0.31632836028874944,0.42,0.38339772931601046,0.4758788391710054,0.0,0.2380952380952381,109,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2020-01-12,11583
12
- 1.0,0.29329394272923165,0.710207473795361,0.56,0.4716341482535363,0.47415700741999534,0.0,0.2380952380952381,110,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2020-01-19,11650
13
- 1.0,0.3150710926081645,0.6225458397661645,0.66,0.5560651882029227,0.2282082561307921,0.0,0.2380952380952381,111,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-01-26,10086
14
- 1.0,0.23335326208386092,0.5093471390869946,0.65,0.5990392189890996,0.09128427138188955,0.0,0.2993197278911565,112,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-02,8454
15
- 1.0,0.18339704064539092,0.46920681970876166,0.66,0.5097387360461574,0.03651393215188798,0.0,0.2993197278911565,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-09,7842
16
- 1.0,0.1829206162885479,0.5702922924005152,0.64,0.3647117781342298,0.5333315970976881,0.0,0.2993197278911565,114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-16,8528
17
- 1.0,0.17708137647064887,0.4762803199026322,0.62,0.2994390381863003,0.9999999999999999,0.0,0.2993197278911565,115,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-23,9230
18
- 1.0,0.2110785179466496,0.31643298954206356,0.65,0.318727924805625,0.5153399788387041,0.0,0.2993197278911565,116,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-03-01,8210
19
- 1.0,0.1922309642774856,0.35110354589746834,0.65,0.3435805763353255,0.20613623376787482,0.0,1.0,117,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-03-08,6573
20
- 1.0,0.1174971533357681,0.4397302099507956,0.64,0.37079693119819457,0.08245451214041095,0.0,1.0,118,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2020-03-15,4464
21
- 1.0,0.04487177585471158,0.5651604986093057,0.66,0.3797815418753292,0.032981804856164386,3.6661729553753427e-06,1.0,119,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2020-03-22,5498
22
- 1.0,0.04417426781579725,0.5142518574426083,0.77,0.3239901926717436,0.013192796475509808,0.00016497778299189042,1.0,120,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-03-29,7134
23
- 1.0,0.09508966430933447,0.4246084040047787,1.0,0.22766051203571303,0.005277118590203924,0.01074555293220513,0.8979591836734694,121,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2020-04-05,6507
24
- 1.0,0.1727148072921107,0.3306303340730278,0.92,0.2557126494916798,0.0021108474360815696,0.07506489126131015,0.8979591836734694,122,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,2020-04-12,6752
25
- 1.0,0.2757761792524949,0.9059477066272279,0.87,0.2910560761584964,0.0008443389744326279,0.11051311756683434,0.8979591836734694,123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-04-19,7874
26
- 1.0,0.46164669127102737,1.0,0.8200000000000001,0.29288325042575475,0.0003377355897730512,0.1323451775160945,0.8979591836734694,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-04-26,8706
27
- 1.0,0.3631365926708698,0.8555262504044332,0.85,0.3143348639913703,0.00013509423590922048,0.12527679605813083,0.8979591836734694,125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-03,9593
28
- 1.0,0.3556269301486625,0.5998066602658987,0.8,0.3573452157072908,5.4838924587260594e-05,0.08418266340132861,0.7482993197278912,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-10,9554
29
- 1.0,0.3898924329688705,0.31953123019194307,0.76,0.3492819601843694,0.08837696494340691,0.06699197841357364,0.7482993197278912,127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-17,9461
30
- 1.0,0.3270785638817633,0.5040802333471541,0.88,0.37224504100306005,0.12944061135952373,0.04806352744497074,0.7482993197278912,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-24,8347
31
- 1.0,0.29596428185745655,0.6228739252579004,0.8300000000000001,0.3873711562094451,0.14079607140381442,0.028926104617911456,0.7482993197278912,129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-31,7926
32
- 1.0,0.23446621861142697,0.644779308361226,0.8,0.3519020717491842,0.15750706055823313,0.024482702995996537,0.6938775510204082,130,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-06-07,8606
33
- 1.0,0.2202508917985891,0.726916988225644,0.71,0.32726146750928653,0.0797309833640819,0.022000703905207433,0.6938775510204082,131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-06-14,7573
34
- 1.0,0.18610614076735926,0.5963517592669729,0.73,0.31618831243754153,0.03501476889363339,0.015086301711369536,0.6938775510204082,132,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2020-06-21,6983
35
- 1.0,0.1568177529621934,0.6764095796293655,0.75,0.2836099513597926,0.014005944823975384,0.011489786042146325,0.6938775510204082,133,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-06-28,6277
36
- 1.0,0.22774801916471138,0.6466210070345804,0.72,0.25409997289933184,0.006272411362367827,0.00871449311492719,0.5714285714285715,134,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-05,7421
37
- 1.0,0.24542124594101095,0.6580063264819511,0.73,0.2516667689694555,0.05947462601462651,0.008318546435746652,0.5714285714285715,135,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-12,7852
38
- 1.0,0.24895270375190542,0.32749815383926373,0.68,0.2671053898526598,0.0888609058832765,0.008014254080450499,0.5714285714285715,136,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-19,7396
39
- 1.0,0.16285259960994197,0.3666961464656464,0.78,0.26077100654286645,0.12420199588573878,0.008058248155915004,0.5714285714285715,137,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-26,7041
40
- 1.0,0.16864346155569104,0.39341698388602436,0.84,0.25893225300958655,0.10423952696584138,0.00920209411799211,0.5714285714285715,138,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-02,7470
41
- 1.0,0.22582910125625383,0.41507293852636135,0.8300000000000001,0.2528768986269057,0.08197739941078482,0.009315745479608745,0.5374149659863946,139,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-09,8725
42
- 1.0,0.2778946696783185,0.7857143231388266,0.8,0.2772125371796957,0.07178679747906064,0.007237025413910927,0.5374149659863946,140,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-16,9657
43
- 1.0,0.3062154076077969,0.434016630925742,0.87,0.33174759696083367,0.12078972986041582,0.006500124649880482,0.5374149659863946,141,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2020-08-23,10000
44
- 1.0,0.2851073700683267,0.4051792323256236,0.8200000000000001,0.3621387745268235,0.1539969659046611,0.006118842662521447,0.5374149659863946,142,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-30,8941
45
- 1.0,0.25999778433367665,0.4113785668398346,0.77,0.3604714968693371,0.1462622685965232,0.006375474769397721,0.4693877551020409,143,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-09-06,8507
46
- 1.0,0.2947500457787596,0.43576671635701947,0.74,0.3084711376902622,0.1030893445960345,0.0060051913009048115,0.4693877551020409,144,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2020-09-13,9887
47
- 1.0,0.3239559328273078,0.40721834097732834,0.72,0.24061271129609485,0.08422768334333634,0.006456130574415978,0.4693877551020409,145,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-09-20,9627
48
- 1.0,0.3189849597494306,0.4831656702512836,0.68,0.28577062852640756,0.054400116894051116,0.006401137980085348,0.4693877551020409,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-09-27,8735
49
- 1.0,0.2930673557404469,0.5423730023996388,0.62,0.32330756771945346,0.02176006539088146,0.007566980979894707,0.45578231292517013,147,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-04,8138
50
- 1.0,0.27381401410957934,0.48862464971809444,0.59,0.33668984325037016,0.008704026156352586,0.009172764734349107,0.45578231292517013,148,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-11,7966
51
- 1.0,0.21658154029531146,0.5162854532967293,0.55,0.44481231480084876,0.003481610462541034,0.012223020633221393,0.45578231292517013,149,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-18,8109
52
- 1.0,0.21772903332032795,0.47368257634991157,0.6,0.46141705479304307,0.0013926441850164136,0.013601501664442522,0.45578231292517013,150,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-25,7848
53
- 1.0,0.16712357438522701,0.5132571164009214,0.5,0.38402389059771924,0.0005570576740065655,0.012915927321787332,0.45578231292517013,151,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-01,6516
54
- 1.0,0.1814031347156822,0.5409537987241609,0.5,0.2968208337801042,0.00022282306960262618,0.013091903623645349,0.45578231292517013,152,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-08,7233
55
- 1.0,0.16852532779394064,0.49490997931858044,0.5,0.22663075929954526,8.912922784105048e-05,0.014624363918992243,0.45578231292517013,153,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-15,7409
56
- 1.0,0.10492104198879731,0.4086344123814518,0.41000000000000003,0.21669561761817938,3.565169113642019e-05,0.016127494830696133,0.45578231292517013,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-22,6232
57
- 1.0,0.16920169406380464,0.45151008168804235,0.49,0.21833619946593313,1.4260676454568076e-05,0.024849320291534072,0.45578231292517013,155,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-29,8170
58
- 1.0,0.1305885456099783,0.4543635808918873,0.47000000000000003,0.1596898931167178,5.704270581827231e-06,0.03519159419864792,0.435374149659864,156,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-06,7075
59
- 1.0,0.1214984593864375,0.35070760971315756,0.4,0.15417676852356046,2.2817082327308923e-06,0.041732046751037526,0.435374149659864,157,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-13,7379
60
- 1.0,0.057042007816384965,0.32470890321593604,0.47000000000000003,0.15442387578570832,9.126832930923571e-07,0.049892947749703036,0.435374149659864,158,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-20,5442
61
- 1.0,0.12406882983279183,0.3135816516054531,0.45,0.1671308209739812,3.650733172369429e-07,0.0686930826648678,0.435374149659864,159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-27,7735
62
- 1.0,0.24786523070013738,0.3102913429236421,0.42,0.16347790840061424,1.4602932689477716e-07,0.0732574679943101,0.435374149659864,160,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-03,9754
63
- 1.0,0.26083059672146286,0.2649240941306087,0.34,0.25327016920452516,5.841173075791087e-08,0.07444897420480709,0.4217687074829932,161,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-10,10641
64
- 1.0,0.24028847292133387,0.6513962629200784,0.38,0.3773812732234543,2.3364692303164347e-08,0.08318546435746653,0.4217687074829932,162,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2021-01-17,10230
65
- 1.0,0.31526302386797916,0.531674302460824,0.47000000000000003,0.3527386460097067,9.345876921265738e-09,0.10258685163731283,0.4217687074829932,163,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-24,10352
66
- 1.0,0.2966293410018717,0.44836670500794606,0.47000000000000003,0.3711695518795665,3.738350768506295e-09,0.13234151134313912,0.4217687074829932,164,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-31,9216
67
- 1.0,0.20088776123137192,0.3815806999416851,0.45,0.33580461662371014,1.4953403074025183e-09,0.12043744775703538,0.40816326530612246,165,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-07,8421
68
- 1.0,0.173394454128539,0.343687050600215,0.48,0.3277941002786073,5.981361229610074e-10,0.11271648751301491,0.40816326530612246,166,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-14,9281
69
- 1.0,0.1777198044422716,0.33051072402008147,0.5,0.31487397296804576,2.3925444918440296e-10,0.109699227170741,0.40816326530612246,167,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-21,8891
70
- 1.0,0.1850269016675808,0.30627520154343757,0.46,0.3133091660972597,9.570177967376119e-11,0.08255854878209734,0.40816326530612246,168,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-28,8169
71
- 1.0,0.2529549962208855,0.298123038215738,0.42,0.3358964981168952,3.828071186950448e-11,0.08351908609640568,0.40816326530612246,169,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-07,8724
72
- 1.0,0.213028120324469,0.3267901551549544,0.44,0.3038053348505854,1.531228474780179e-11,0.07285052279626343,0.40816326530612246,170,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-14,8194
73
- 1.0,0.16441430466323353,0.25967469209260036,0.5,0.32087357753439977,6.124913899120717e-12,0.07822879852179906,0.40816326530612246,171,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-21,8254
74
- 1.0,0.11053130189212229,0.260168451958828,0.42,0.3279459500984871,2.449965559648287e-12,0.07333812379932836,0.40816326530612246,172,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-28,7026
75
- 1.0,0.06917021315146277,0.0,0.38,0.37411287881420296,9.799862238593149e-13,0.07465061371735272,0.39455782312925175,173,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-04-04,6412
76
- 1.0,0.06728264676731566,0.0,0.44,0.4347510050616973,3.9199448954372595e-13,0.0732721326861316,0.39455782312925175,174,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2021-04-11,6297
77
- 1.0,0.10167805497311716,0.0,0.43,0.4574504815633023,1.5679779581749037e-13,0.07982724993034271,0.39455782312925175,175,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,2021-04-18,6687
78
- 1.0,0.1734619149834527,0.0,0.48,0.48912312446006045,6.271911832699615e-14,0.06941165256412136,0.39455782312925175,176,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-04-25,8430
79
- 1.0,0.2040432878056308,0.0,0.46,0.44466429049983563,2.5087647330798465e-14,0.06276854716898124,0.39455782312925175,177,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-02,8025
80
- 1.0,0.20788046814877387,0.0,0.48,0.5722675873212515,1.0035058932319387e-14,0.04882242524673344,0.40136054421768713,178,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-09,8242
81
- 1.0,0.14929264058846564,0.0,0.5,0.45913415146070335,4.014023572927755e-15,0.033618806000791895,0.40136054421768713,179,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-16,8280
82
- 1.0,0.11694210039888364,0.0,0.51,0.39528662679579885,1.6056094291711022e-15,0.025182942030473228,0.40136054421768713,180,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-23,7909
83
- 1.0,0.055184035342337234,0.0,0.51,0.3880077087936407,6.422437716684409e-16,0.017652622780132275,0.40136054421768713,181,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-30,7574
84
- 1.0,0.04358787034563821,0.0,0.5,0.3863265622647678,2.568975086673764e-16,0.012651962869000308,0.3673469387755103,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-06-06,7270
85
- 1.0,0.03833609653008979,0.0,0.46,0.3784495643657444,1.0275900346695056e-16,0.008835476822454577,0.3673469387755103,183,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-06-13,6716
86
- 1.0,0.06111263589867566,0.0,0.48,0.38862024435317233,4.1103601386780226e-17,0.005939200187708055,0.3673469387755103,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-06-20,6944
87
- 1.0,0.07119833324643848,0.0,0.44,0.4039000969934476,1.644144055471209e-17,0.004967664354533589,0.3673469387755103,185,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2021-06-27,6803
88
- 1.0,0.0659956847282599,0.0,0.45,0.4420872417106599,6.576576221884836e-18,0.004359079643941282,0.3537414965986395,186,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-04,7019
89
- 1.0,0.12577031397293442,0.0,0.45,0.4950177419852857,2.630630488753935e-18,0.003977797656582247,0.3537414965986395,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-11,8254
90
- 1.0,0.1502746019886232,0.0,0.45,0.5650602702260171,1.052252195501574e-18,0.0040621196345558795,0.3537414965986395,188,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-18,7804
91
- 1.0,0.21001397285486328,0.0,0.42,0.594015126140436,4.209008782006296e-19,0.004952999662712088,0.3537414965986395,189,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-25,8212
92
- 1.0,0.23464189851384848,0.0,0.46,0.5484130743981998,1.6836035128025183e-19,0.008076579020691881,0.3537414965986395,190,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-01,8378
93
- 1.0,0.23496148203757855,0.0,0.47000000000000003,0.5324473242588711,6.734414051210074e-20,0.01220102359548914,0.3197278911564626,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-08,9496
94
- 1.0,0.23319893582092505,0.0,0.53,0.5532778727756644,2.6937656204840295e-20,0.020152952735698258,0.3197278911564626,192,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-15,9511
95
- 1.0,0.23262329847201318,0.0,0.49,0.7309984534528141,1.0775062481936118e-20,0.029028757460661962,0.3197278911564626,193,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-22,9569
96
- 1.0,0.18495638415853394,0.0,0.46,0.8724050615489382,4.310024992774448e-21,0.03698435277382646,0.3197278911564626,194,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-29,7928
97
- 1.0,0.2921700012245981,0.0,0.49,1.0,1.7240099971097793e-21,0.03982197064128697,0.3129251700680272,195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-05,7840
98
- 1.0,0.4172971677569805,0.0,0.48,0.8193686075762131,6.896039988439117e-22,0.03868179085216524,0.3129251700680272,196,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-12,9521
99
- 1.0,0.5004920981884484,0.0,0.53,0.4496097944711011,2.758415995375647e-22,0.03902274493701515,0.3129251700680272,197,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-19,9451
100
- 1.0,0.6383788968475093,0.0,0.47000000000000003,0.3701822126418114,1.1033663981502588e-22,0.03567186285580209,0.3129251700680272,198,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-26,8898
101
- 1.0,0.6501651617929107,0.0,0.51,0.34258196039636274,4.413465592601035e-23,0.0352539191388893,0.3129251700680272,199,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-03,8441
102
- 1.0,0.6649283374522998,0.0,0.51,0.31355701111053985,1.7653862370404143e-23,0.03635010485254652,0.28571428571428575,200,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-10,8788
103
- 1.0,0.6097114754591861,0.0,0.51,0.32306971094469733,7.061544948161657e-24,0.031323781730726925,0.28571428571428575,201,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-17,9569
104
- 1.0,0.3964279757062242,0.0,0.51,0.33051520280988034,2.8246179792646632e-24,0.02719933715592967,0.28571428571428575,202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-24,9008
105
- 1.0,0.33105364706311086,0.0,0.47000000000000003,0.3259978333423606,1.1298471917058652e-24,0.025967503042923553,0.28571428571428575,203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-31,8495
106
- 1.0,0.31714045716637634,0.0,0.55,0.3045528431182349,4.519388766823461e-25,0.02263128565353199,0.2653061224489796,204,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-07,8807
107
- 1.0,0.28268319082761023,0.0,0.49,0.31370309424641213,1.8077555067293845e-25,0.01786159463858867,0.2653061224489796,205,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-14,8385
108
- 1.0,0.15774740707436136,0.0,0.51,0.37945364695975814,7.231022026917538e-26,0.016409790148260033,0.2653061224489796,206,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-21,6964
109
- 1.0,0.2836203500514554,0.0,0.55,0.36793503370466,2.892408810767015e-26,0.01882946429880776,0.2653061224489796,207,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-28,9340
110
- 1.0,0.33646919882766096,0.0,0.49,0.3299836196379579,1.1569635243068062e-26,0.023555161238286576,0.272108843537415,208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-05,8632
111
- 1.0,0.361268166630245,0.0,0.38,0.3243428164088717,4.6278540972272255e-27,0.029421037966887126,0.272108843537415,209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-12,9271
112
- 1.0,0.21850759166298056,0.0,0.51,0.34100191273497404,1.8511416388908902e-27,0.029549354020325262,0.272108843537415,210,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-19,7663
113
- 1.0,0.2156152088113536,0.0,0.43,0.3876459690915292,7.404566555563562e-28,0.04853646375621416,0.272108843537415,211,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-26,7888
114
- 1.0,0.4122692273972545,0.0,0.42,0.44121852053456856,2.961826622225425e-28,0.07303383144403221,0.272108843537415,212,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-02,11088
115
- 1.0,0.5580863257308297,0.0,0.42,0.33648328199770844,1.18473064889017e-28,0.2914790808171166,0.2585034013605442,213,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-09,12850
116
- 1.0,0.5441541455767391,0.0,0.45,0.5258301345263098,4.7389225955606806e-29,0.6228644542534939,0.2585034013605442,214,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-16,12768
117
- 1.0,0.37953926965668333,0.0,0.51,0.6191133700101356,1.8955690382242722e-29,1.0,0.2585034013605442,215,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2022-01-23,11023
118
- 1.0,0.3422525462363791,0.0,0.5,0.6600516747429145,7.582276152897087e-30,0.8603298089190655,0.2585034013605442,216,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-30,10317
119
- 1.0,0.3679329127754763,0.0,0.49,0.6150147631969254,3.0329104611588346e-30,0.3851571321728674,0.2448979591836735,217,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-02-06,10109
120
- 1.0,0.3530129569359208,0.0,0.49,0.5435710104633258,1.2131641844635335e-30,0.18207314748280565,0.2448979591836735,218,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-02-13,10233
121
- 1.0,0.3628237688509028,0.0,0.48,0.5395383650448762,4.852656737854129e-31,0.08532284319045035,0.2448979591836735,219,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-02-20,10660
122
- 1.0,0.3535562124344392,0.0,0.49,0.3713089856353334,1.941062695141646e-31,0.04778123212740684,0.2448979591836735,220,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-02-27,9862
123
- 1.0,0.35851767100446613,0.0,0.49,0.33021424233802193,7.764250780566529e-32,0.028365180155739026,0.2448979591836735,221,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-03-06,10393
124
- 1.0,0.3648140365425708,0.0,0.53,0.29899648842829235,3.105700312226557e-32,0.019053100849085656,0.2448979591836735,222,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-03-13,9914
125
- 1.0,0.417768904168966,0.0,0.46,0.30801461857263196,1.242280124890568e-32,0.014096435013418193,0.2448979591836735,223,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-03-20,11027
126
- 1.0,0.45364666714531404,0.0,0.5,0.29874033139572204,4.9691204995617213e-33,0.013440190054406007,0.2448979591836735,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-03-27,10066
127
- 1.0,0.45997433293937545,0.0,0.45,0.3080341285301519,1.9876481998241388e-33,0.014672024167412121,0.2448979591836735,225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-04-03,8722
128
- 1.0,0.4245480429075594,0.0,0.46,0.304189689538618,7.950592799291056e-34,0.01936472555029256,0.2448979591836735,226,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2022-04-10,7805
129
- 1.0,0.4463068738641009,0.0,0.54,0.307818077305473,3.1802371197109226e-34,0.027822586558343475,0.2448979591836735,227,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,2022-04-17,8519
130
- 1.0,0.6012222981571669,0.0,0.53,0.29394180576819906,1.272094847878869e-34,0.033340176856183366,0.2448979591836735,228,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-04-24,10084
131
- 1.0,0.6804106164543928,0.0,0.5,0.28219281269675367,5.088379391460478e-35,0.04576117082899503,0.2448979591836735,229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-01,10291
132
- 1.0,0.62805714350389,0.0,0.54,0.30839694661979145,2.035351756529193e-35,0.05172603422739071,0.2448979591836735,230,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-08,9743
133
- 1.0,0.7470007501508245,0.0,0.54,0.3120111152265925,8.141407025566787e-36,0.04952999662712088,0.2448979591836735,231,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-15,10759
134
- 1.0,0.6460736106378411,0.0,0.55,0.2905779236460707,3.25656280967673e-36,0.06457597043598129,0.2448979591836735,232,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-22,9845
135
- 1.0,0.5732108245519132,0.0,0.52,0.38068837954927237,1.3026251233207076e-36,0.080201199571791,0.2448979591836735,233,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-29,9499
136
- 1.0,0.5996683384067256,0.0,0.5,0.3940488499594224,5.210500487782985e-37,0.09049581323048496,0.40680272108843546,234,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-06-05,10021
137
- 1.0,0.5630659455826548,0.0,0.54,0.4539755399873685,2.0842001896133483e-37,0.09128037424293528,0.40680272108843546,235,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-06-12,10112
138
- 1.0,0.5482324249484887,0.0,0.45,0.48814019600803654,8.336800703454939e-38,0.08289217052103649,0.40680272108843546,236,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-06-19,10034
139
- 1.0,0.5485743918729864,0.0,0.47000000000000003,0.475428506654356,3.3347202263835196e-38,0.06987359035649866,0.40680272108843546,237,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2022-06-26,9209
140
- 1.0,0.5559932625646005,0.0,0.43,0.510072176038165,1.333888035554951e-38,0.06264756346145385,0.40680272108843546,238,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-03,10265
141
- 1.0,0.6089718159266746,0.0,0.45,0.44215508529036335,5.33555159223524e-39,0.0627612148230705,0.40680272108843546,239,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-10,10033
142
- 1.0,0.6101706458097598,0.0,0.48,0.41550269661979555,2.1342200869095313e-39,0.07072780865510112,0.40680272108843546,240,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-17,9790
143
- 1.0,0.6111403594460636,0.0,0.44,0.437146146258812,8.536874847792479e-40,0.07964760745552932,0.40680272108843546,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-24,9629
144
- 1.0,0.6451477728019566,0.0,0.44,0.4975101423754845,3.4147444392713438e-40,0.0893739643061401,0.40680272108843546,242,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-31,10134
145
- 1.0,0.7267513590970145,0.0,0.44,0.5042632593424633,1.3658922758628901e-40,0.09389435556011791,0.40680272108843546,243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-07,12029
146
- 1.0,0.832744074444703,0.0,0.46,0.5840915039533217,5.463514104995084e-41,0.08482790984147467,0.40680272108843546,244,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-14,12886
147
- 1.0,0.8546151893753493,0.0,0.49,0.6374603327364593,2.1853506435415578e-41,0.07962194424484169,0.40680272108843546,245,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-21,12027
148
- 1.0,0.9999999999999998,0.0,0.55,0.6022458246191313,8.740852589601472e-42,0.07178366646624922,0.40680272108843546,246,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-28,11375
149
- 1.0,0.860672618209781,0.0,0.48,0.5735957859704555,3.495791051275827e-42,0.05725095687114135,0.40680272108843546,247,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-04,10824
150
- 1.0,0.8622728019659036,0.0,0.54,0.5790428094946118,1.39776643594557e-42,0.050739833702394745,0.40680272108843546,248,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-11,12285
151
- 1.0,0.7774120906393625,0.0,0.55,0.7618650061054455,5.585565898134668e-43,0.0440857297883885,0.40680272108843546,249,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-18,12146
152
- 1.0,0.6580209603679659,0.0,0.52,0.8137272725878776,2.2287265136062566e-43,0.039975949905412735,0.40680272108843546,250,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-25,10881
153
- 1.0,0.9480011027127861,0.0,0.52,0.7867690657367606,8.859907597948911e-44,0.03648941942485079,0.40680272108843546,251,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-02,11373
154
- 1.0,0.709096498806814,0.0,0.46,0.7292818780372798,3.4889645827034517e-44,0.04076784326377381,0.40680272108843546,252,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-09,10230
155
- 1.0,0.5414415970743589,0.0,0.45,0.6974583695681711,1.340587376605267e-44,0.04368978310920796,0.0,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-16,11557
156
- 1.0,0.6081525119323576,0.0,0.54,0.6240593695822464,4.812364941659934e-45,0.041156457597043596,0.0,254,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-23,10805
157
- 1.0,0.5960421531458853,0.0,0.45,0.5899287906913332,1.3749614119028383e-45,0.03843982343711047,0.0,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-30,9709
158
- 1.0,0.848521629204434,0.0,0.47000000000000003,0.6201930426013046,0.0,0.040723849188309305,0.0,256,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-11-06,10098