Spaces:
Sleeping
Sleeping
import streamlit as st | |
import plotly.express as px | |
import numpy as np | |
import plotly.graph_objects as go | |
from sklearn.metrics import r2_score | |
from collections import OrderedDict | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
import re | |
from matplotlib.colors import ListedColormap | |
# from st_aggrid import AgGrid, GridOptionsBuilder | |
# from src.agstyler import PINLEFT, PRECISION_TWO, draw_grid | |
def format_numbers(x): | |
if abs(x) >= 1e6: | |
# Format as millions with one decimal place and commas | |
return f'{x/1e6:,.1f}M' | |
elif abs(x) >= 1e3: | |
# Format as thousands with one decimal place and commas | |
return f'{x/1e3:,.1f}K' | |
else: | |
# Format with one decimal place and commas for values less than 1000 | |
return f'{x:,.1f}' | |
def line_plot(data, x_col, y1_cols, y2_cols, title): | |
fig = go.Figure() | |
for y1_col in y1_cols: | |
fig.add_trace(go.Scatter(x=data[x_col], y=data[y1_col], mode='lines', name=y1_col,line=dict(color='#11B6BD'))) | |
for y2_col in y2_cols: | |
fig.add_trace(go.Scatter(x=data[x_col], y=data[y2_col], mode='lines', name=y2_col, yaxis='y2',line=dict(color='#739FAE'))) | |
if len(y2_cols)!=0: | |
fig.update_layout(yaxis=dict(), yaxis2=dict(overlaying='y', side='right')) | |
else: | |
fig.update_layout(yaxis=dict(), yaxis2=dict(overlaying='y', side='right')) | |
if title: | |
fig.update_layout(title=title) | |
fig.update_xaxes(showgrid=False) | |
fig.update_yaxes(showgrid=False) | |
return fig | |
def line_plot_target(df,target,title): | |
coefficients = np.polyfit(df['date'].view('int64'), df[target], 1) | |
trendline = np.poly1d(coefficients) | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=df['date'], y=df[target], mode='lines', name=target,line=dict(color='#11B6BD'))) | |
trendline_x = df['date'] | |
trendline_y = trendline(df['date'].view('int64')) | |
fig.add_trace(go.Scatter(x=trendline_x, y=trendline_y, mode='lines', name='Trendline', line=dict(color='#739FAE'))) | |
fig.update_layout( | |
title=title, | |
xaxis=dict(type='date') | |
) | |
for year in df['date'].dt.year.unique()[1:]: | |
january_1 = pd.Timestamp(year=year, month=1, day=1) | |
fig.add_shape( | |
go.layout.Shape( | |
type="line", | |
x0=january_1, | |
x1=january_1, | |
y0=0, | |
y1=1, | |
xref="x", | |
yref="paper", | |
line=dict(color="grey", width=1.5, dash="dash"), | |
) | |
) | |
return fig | |
def correlation_plot(df,selected_features,target): | |
custom_cmap = ListedColormap(['#08083B', "#11B6BD"]) | |
corr_df=df[selected_features] | |
corr_df=pd.concat([corr_df,df[target]],axis=1) | |
fig, ax = plt.subplots(figsize=(16, 12)) | |
sns.heatmap(corr_df.corr(),annot=True, cmap='Blues', fmt=".2f", linewidths=0.5,mask=np.triu(corr_df.corr())) | |
#plt.title('Correlation Plot') | |
plt.xticks(rotation=45) | |
plt.yticks(rotation=0) | |
return fig | |
def summary(data,selected_feature,spends,Target=None): | |
if Target: | |
sum_df = data[selected_feature] | |
sum_df['Year']=data['date'].dt.year | |
sum_df=sum_df.groupby('Year')[selected_feature].sum() | |
sum_df=sum_df.reset_index() | |
total_sum = sum_df.sum(numeric_only=True) | |
total_sum['Year'] = 'Total' | |
sum_df = sum_df.append(total_sum, ignore_index=True) | |
sum_df.set_index(['Year'],inplace=True) | |
sum_df=sum_df.applymap(format_numbers) | |
spends_col=[col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])] | |
for col in spends_col: | |
sum_df[col]=sum_df[col].map(lambda x: f'${x}') | |
# st.write(spends_col) | |
# sum_df = sum_df.reindex(sorted(sum_df.columns), axis=1) | |
return sum_df | |
else: | |
#selected_feature=list(selected_feature) | |
selected_feature.append(spends) | |
selected_feature=list(set(selected_feature)) | |
if len(selected_feature)>1: | |
sum_df = data[selected_feature] | |
sum_df['Year']=data['date'].dt.year | |
sum_df=sum_df.groupby('Year')[selected_feature].agg('sum') | |
sum_df['CPM/CPC']=(sum_df.iloc[:, 1] / sum_df.iloc[:, 0])*1000 | |
sum_df.loc['Grand Total']=sum_df.sum() | |
sum_df=sum_df.applymap(format_numbers) | |
sum_df.fillna('-',inplace=True) | |
sum_df=sum_df.replace({"0.0":'-','nan':'-'}) | |
spends_col=[col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])] | |
for col in spends_col: | |
sum_df[col]=sum_df[col].map(lambda x: f'${x}') | |
return sum_df | |
else: | |
sum_df = data[selected_feature] | |
sum_df['Year']=data['date'].dt.year | |
sum_df=sum_df.groupby('Year')[selected_feature].agg('sum') | |
sum_df.loc['Grand Total']=sum_df.sum() | |
sum_df=sum_df.applymap(format_numbers) | |
sum_df.fillna('-',inplace=True) | |
sum_df=sum_df.replace({"0.0":'-','nan':'-'}) | |
spends_col=[col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])] | |
for col in spends_col: | |
sum_df[col]=sum_df[col].map(lambda x: f'${x}') | |
return sum_df | |
def sanitize_key(key, prefix=""): | |
# Use regular expressions to remove non-alphanumeric characters and spaces | |
key = re.sub(r'[^a-zA-Z0-9]', '', key) | |
return f"{prefix}{key}" | |