Spaces:
Runtime error
Runtime error
Streamlit app added.
Browse files- app.py +323 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_url, cached_download
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import io
|
| 4 |
+
import gc
|
| 5 |
+
|
| 6 |
+
########################################################################################################
|
| 7 |
+
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
| 8 |
+
########################################################################################################
|
| 9 |
+
|
| 10 |
+
MODEL_REPO = 'BlinkDL/clip-guided-binary-autoencoder'
|
| 11 |
+
|
| 12 |
+
import torch, types
|
| 13 |
+
import numpy as np
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from torch.nn import functional as F
|
| 17 |
+
import torchvision as vision
|
| 18 |
+
import torchvision.transforms as transforms
|
| 19 |
+
from torchvision.transforms import functional as VF
|
| 20 |
+
|
| 21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ToBinary(torch.autograd.Function):
|
| 25 |
+
|
| 26 |
+
@staticmethod
|
| 27 |
+
def forward(ctx, x):
|
| 28 |
+
return torch.floor(
|
| 29 |
+
x + 0.5) # no need for noise when we have plenty of data
|
| 30 |
+
|
| 31 |
+
@staticmethod
|
| 32 |
+
def backward(ctx, grad_output):
|
| 33 |
+
return grad_output.clone() # pass-through
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class ResBlock(nn.Module):
|
| 37 |
+
|
| 38 |
+
def __init__(self, c_x, c_hidden):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.B0 = nn.BatchNorm2d(c_x)
|
| 41 |
+
self.C0 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
|
| 42 |
+
self.C1 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
|
| 43 |
+
self.C2 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
|
| 44 |
+
self.C3 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
|
| 45 |
+
|
| 46 |
+
def forward(self, x):
|
| 47 |
+
ACT = F.mish
|
| 48 |
+
x = x + self.C1(ACT(self.C0(ACT(self.B0(x)))))
|
| 49 |
+
x = x + self.C3(ACT(self.C2(x)))
|
| 50 |
+
return x
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class REncoderSmall(nn.Module):
|
| 54 |
+
|
| 55 |
+
def __init__(self, args):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.args = args
|
| 58 |
+
dd = 8
|
| 59 |
+
self.Bxx = nn.BatchNorm2d(dd * 64)
|
| 60 |
+
|
| 61 |
+
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
| 62 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
| 63 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 64 |
+
|
| 65 |
+
self.B00 = nn.BatchNorm2d(dd * 4)
|
| 66 |
+
self.C00 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
|
| 67 |
+
self.C01 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
|
| 68 |
+
self.C02 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
|
| 69 |
+
self.C03 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
|
| 70 |
+
|
| 71 |
+
self.B10 = nn.BatchNorm2d(dd * 16)
|
| 72 |
+
self.C10 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
|
| 73 |
+
self.C11 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
|
| 74 |
+
self.C12 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
|
| 75 |
+
self.C13 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
|
| 76 |
+
|
| 77 |
+
self.B20 = nn.BatchNorm2d(dd * 64)
|
| 78 |
+
self.C20 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
|
| 79 |
+
self.C21 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
|
| 80 |
+
self.C22 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
|
| 81 |
+
self.C23 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
|
| 82 |
+
|
| 83 |
+
self.COUT = nn.Conv2d(dd * 64,
|
| 84 |
+
args.my_img_bit,
|
| 85 |
+
kernel_size=3,
|
| 86 |
+
padding=1)
|
| 87 |
+
|
| 88 |
+
def forward(self, img):
|
| 89 |
+
ACT = F.mish
|
| 90 |
+
|
| 91 |
+
x = self.CIN(img)
|
| 92 |
+
xx = self.Bxx(F.pixel_unshuffle(x, 8))
|
| 93 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
| 94 |
+
|
| 95 |
+
x = F.pixel_unshuffle(x, 2)
|
| 96 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
| 97 |
+
x = x + self.C03(ACT(self.C02(x)))
|
| 98 |
+
|
| 99 |
+
x = F.pixel_unshuffle(x, 2)
|
| 100 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
| 101 |
+
x = x + self.C13(ACT(self.C12(x)))
|
| 102 |
+
|
| 103 |
+
x = F.pixel_unshuffle(x, 2)
|
| 104 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
| 105 |
+
x = x + self.C23(ACT(self.C22(x)))
|
| 106 |
+
|
| 107 |
+
x = self.COUT(x + xx)
|
| 108 |
+
return torch.sigmoid(x)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class RDecoderSmall(nn.Module):
|
| 112 |
+
|
| 113 |
+
def __init__(self, args):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.args = args
|
| 116 |
+
dd = 8
|
| 117 |
+
self.CIN = nn.Conv2d(args.my_img_bit,
|
| 118 |
+
dd * 64,
|
| 119 |
+
kernel_size=3,
|
| 120 |
+
padding=1)
|
| 121 |
+
|
| 122 |
+
self.B00 = nn.BatchNorm2d(dd * 64)
|
| 123 |
+
self.C00 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
|
| 124 |
+
self.C01 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
|
| 125 |
+
self.C02 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
|
| 126 |
+
self.C03 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
|
| 127 |
+
|
| 128 |
+
self.B10 = nn.BatchNorm2d(dd * 16)
|
| 129 |
+
self.C10 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
|
| 130 |
+
self.C11 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
|
| 131 |
+
self.C12 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
|
| 132 |
+
self.C13 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
|
| 133 |
+
|
| 134 |
+
self.B20 = nn.BatchNorm2d(dd * 4)
|
| 135 |
+
self.C20 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
|
| 136 |
+
self.C21 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
|
| 137 |
+
self.C22 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
|
| 138 |
+
self.C23 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
|
| 139 |
+
|
| 140 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
| 141 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 142 |
+
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
| 143 |
+
|
| 144 |
+
def forward(self, code):
|
| 145 |
+
ACT = F.mish
|
| 146 |
+
x = self.CIN(code)
|
| 147 |
+
|
| 148 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
| 149 |
+
x = x + self.C03(ACT(self.C02(x)))
|
| 150 |
+
x = F.pixel_shuffle(x, 2)
|
| 151 |
+
|
| 152 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
| 153 |
+
x = x + self.C13(ACT(self.C12(x)))
|
| 154 |
+
x = F.pixel_shuffle(x, 2)
|
| 155 |
+
|
| 156 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
| 157 |
+
x = x + self.C23(ACT(self.C22(x)))
|
| 158 |
+
x = F.pixel_shuffle(x, 2)
|
| 159 |
+
|
| 160 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
| 161 |
+
x = self.COUT(x)
|
| 162 |
+
|
| 163 |
+
return torch.sigmoid(x)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class REncoderLarge(nn.Module):
|
| 167 |
+
|
| 168 |
+
def __init__(self, args, dd, ee, ff):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.args = args
|
| 171 |
+
self.CXX = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
| 172 |
+
self.BXX = nn.BatchNorm2d(dd)
|
| 173 |
+
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
|
| 174 |
+
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
|
| 175 |
+
self.R0 = ResBlock(dd * 4, ff)
|
| 176 |
+
self.R1 = ResBlock(dd * 16, ff)
|
| 177 |
+
self.R2 = ResBlock(dd * 64, ff)
|
| 178 |
+
self.CZZ = nn.Conv2d(dd * 64,
|
| 179 |
+
args.my_img_bit,
|
| 180 |
+
kernel_size=3,
|
| 181 |
+
padding=1)
|
| 182 |
+
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
ACT = F.mish
|
| 185 |
+
x = self.BXX(self.CXX(x))
|
| 186 |
+
|
| 187 |
+
x = x + self.CX1(ACT(self.CX0(x)))
|
| 188 |
+
x = F.pixel_unshuffle(x, 2)
|
| 189 |
+
x = self.R0(x)
|
| 190 |
+
x = F.pixel_unshuffle(x, 2)
|
| 191 |
+
x = self.R1(x)
|
| 192 |
+
x = F.pixel_unshuffle(x, 2)
|
| 193 |
+
x = self.R2(x)
|
| 194 |
+
|
| 195 |
+
x = self.CZZ(x)
|
| 196 |
+
return torch.sigmoid(x)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class RDecoderLarge(nn.Module):
|
| 200 |
+
|
| 201 |
+
def __init__(self, args):
|
| 202 |
+
super().__init__()
|
| 203 |
+
self.args = args
|
| 204 |
+
if 'd16_512' in model_prefix:
|
| 205 |
+
dd, ee, ff = 16, 64, 512
|
| 206 |
+
elif 'd32_1024' in model_prefix:
|
| 207 |
+
dd, ee, ff = 32, 128, 1024
|
| 208 |
+
self.CZZ = nn.Conv2d(args.my_img_bit,
|
| 209 |
+
dd * 64,
|
| 210 |
+
kernel_size=3,
|
| 211 |
+
padding=1)
|
| 212 |
+
self.BZZ = nn.BatchNorm2d(dd * 64)
|
| 213 |
+
self.R0 = ResBlock(dd * 64, ff)
|
| 214 |
+
self.R1 = ResBlock(dd * 16, ff)
|
| 215 |
+
self.R2 = ResBlock(dd * 4, ff)
|
| 216 |
+
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
|
| 217 |
+
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
|
| 218 |
+
self.CXX = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
| 219 |
+
|
| 220 |
+
def forward(self, x):
|
| 221 |
+
ACT = F.mish
|
| 222 |
+
x = self.BZZ(self.CZZ(x))
|
| 223 |
+
|
| 224 |
+
x = self.R0(x)
|
| 225 |
+
x = F.pixel_shuffle(x, 2)
|
| 226 |
+
x = self.R1(x)
|
| 227 |
+
x = F.pixel_shuffle(x, 2)
|
| 228 |
+
x = self.R2(x)
|
| 229 |
+
x = F.pixel_shuffle(x, 2)
|
| 230 |
+
x = x + self.CX1(ACT(self.CX0(x)))
|
| 231 |
+
|
| 232 |
+
x = self.CXX(x)
|
| 233 |
+
return torch.sigmoid(x)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
@st.cache_resource(max_entries=1)
|
| 237 |
+
def prepare_model(model_prefix):
|
| 238 |
+
gc.collect()
|
| 239 |
+
|
| 240 |
+
if model_prefix == 'out-v7c_d8_256-224-13bit-OB32x0.5-745':
|
| 241 |
+
R_ENCODER, R_DECODER = REncoderSmall, RDecoderSmall
|
| 242 |
+
else:
|
| 243 |
+
if 'd16_512' in model_prefix:
|
| 244 |
+
dd, ee, ff = 16, 64, 512
|
| 245 |
+
elif 'd32_1024' in model_prefix:
|
| 246 |
+
dd, ee, ff = 32, 128, 1024
|
| 247 |
+
R_ENCODER, R_DECODER = ((lambda args: REncoderLarge(args, dd, ee, ff)),
|
| 248 |
+
(lambda args: RDecoderLarge(args, dd, ee, ff)))
|
| 249 |
+
|
| 250 |
+
args = types.SimpleNamespace()
|
| 251 |
+
args.my_img_bit = 13
|
| 252 |
+
encoder = R_ENCODER(args).eval().to(device)
|
| 253 |
+
decoder = R_DECODER(args).eval().to(device)
|
| 254 |
+
|
| 255 |
+
zpow = torch.tensor([2**i for i in range(0, 13)]).reshape(13, 1, 1)
|
| 256 |
+
zpow = zpow.to(device).long()
|
| 257 |
+
|
| 258 |
+
encoder.load_state_dict(
|
| 259 |
+
torch.load(
|
| 260 |
+
cached_download(hf_hub_url(MODEL_REPO, f'{model_prefix}-E.pth'))))
|
| 261 |
+
decoder.load_state_dict(
|
| 262 |
+
torch.load(
|
| 263 |
+
cached_download(hf_hub_url(MODEL_REPO, f'{model_prefix}-D.pth'))))
|
| 264 |
+
|
| 265 |
+
encoder.eval()
|
| 266 |
+
decoder.eval()
|
| 267 |
+
|
| 268 |
+
return encoder, decoder
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def encode(model_prefix, img):
|
| 272 |
+
encoder, _ = prepare_model(model_prefix)
|
| 273 |
+
img_transform = transforms.Compose([
|
| 274 |
+
transforms.PILToTensor(),
|
| 275 |
+
transforms.ConvertImageDtype(torch.float),
|
| 276 |
+
transforms.Resize((224, 224))
|
| 277 |
+
])
|
| 278 |
+
|
| 279 |
+
with torch.no_grad():
|
| 280 |
+
img = img_transform(img.convert("RGB")).unsqueeze(0).to(device)
|
| 281 |
+
z = encoder(img)
|
| 282 |
+
z = ToBinary.apply(z)
|
| 283 |
+
|
| 284 |
+
return z.cpu().numpy()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def decode(model_prefix, z):
|
| 288 |
+
_, decoder = prepare_model(model_prefix)
|
| 289 |
+
decoded = decoder(torch.Tensor(z).to(device))
|
| 290 |
+
return VF.to_pil_image(decoded[0])
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
st.title("clip-guided-binary-autoencoder")
|
| 294 |
+
model_prefix = st.selectbox('The model to use',
|
| 295 |
+
('out-v7c_d8_256-224-13bit-OB32x0.5-745',
|
| 296 |
+
'out-v7d_d16_512-224-13bit-OB32x0.5-2487',
|
| 297 |
+
'out-v7d_d32_1024-224-13bit-OB32x0.5-5560'))
|
| 298 |
+
|
| 299 |
+
encoder_tab, decoder_tab = st.tabs(["Encode", "Decode"])
|
| 300 |
+
|
| 301 |
+
with encoder_tab:
|
| 302 |
+
col_in, col_out = st.columns(2)
|
| 303 |
+
uploaded_file = col_in.file_uploader('Choose an Image')
|
| 304 |
+
if uploaded_file is not None:
|
| 305 |
+
image = Image.open(uploaded_file)
|
| 306 |
+
col_in.image(image, 'Input Image')
|
| 307 |
+
z = encode(model_prefix, image)
|
| 308 |
+
with io.BytesIO() as buffer:
|
| 309 |
+
np.save(buffer, z)
|
| 310 |
+
col_out.download_button(
|
| 311 |
+
label="Download Encoded Data",
|
| 312 |
+
data=buffer,
|
| 313 |
+
file_name=uploaded_file.name + '.npy',
|
| 314 |
+
)
|
| 315 |
+
col_out.image(decode(model_prefix, z), 'Output Image preview')
|
| 316 |
+
|
| 317 |
+
with decoder_tab:
|
| 318 |
+
col_in, col_out = st.columns(2)
|
| 319 |
+
uploaded_file = col_in.file_uploader('Choose an Encoded Data')
|
| 320 |
+
if uploaded_file is not None:
|
| 321 |
+
z = np.load(uploaded_file)
|
| 322 |
+
image = decode(model_prefix, z)
|
| 323 |
+
col_out.image(image, 'Output Image')
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.21.5
|
| 2 |
+
Pillow==9.4.0
|
| 3 |
+
torch==1.13.1+cu117
|
| 4 |
+
torchvision==0.14.1+cu117
|