Blealtan's picture
Remove debug output
ccb91eb
raw
history blame
No virus
11 kB
import base64
from huggingface_hub import hf_hub_download
import streamlit as st
import io
import gc
import json
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
MODEL_REPO = 'BlinkDL/clip-guided-binary-autoencoder'
import torch, types
import numpy as np
from PIL import Image
import torch.nn as nn
from torch.nn import functional as F
import torchvision as vision
import torchvision.transforms as transforms
from torchvision.transforms import functional as VF
device = 'cuda' if torch.cuda.is_available() else 'cpu'
IMG_BITS = 13
class ResBlock(nn.Module):
def __init__(self, c_x, c_hidden):
super().__init__()
self.B0 = nn.BatchNorm2d(c_x)
self.C0 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
self.C1 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
self.C2 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
self.C3 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
def forward(self, x):
ACT = F.mish
x = x + self.C1(ACT(self.C0(ACT(self.B0(x)))))
x = x + self.C3(ACT(self.C2(x)))
return x
class REncoderSmall(nn.Module):
def __init__(self):
super().__init__()
dd = 8
self.Bxx = nn.BatchNorm2d(dd * 64)
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd * 4)
self.C00 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd * 16)
self.C10 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd * 64)
self.C20 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd * 64, IMG_BITS, kernel_size=3, padding=1)
def forward(self, img):
ACT = F.mish
x = self.CIN(img)
xx = self.Bxx(F.pixel_unshuffle(x, 8))
x = x + self.Cx1(ACT(self.Cx0(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = self.COUT(x + xx)
return torch.sigmoid(x)
class RDecoderSmall(nn.Module):
def __init__(self):
super().__init__()
dd = 8
self.CIN = nn.Conv2d(IMG_BITS, dd * 64, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd * 64)
self.C00 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd * 64, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd * 64, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd * 16)
self.C10 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd * 16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd * 16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd * 4)
self.C20 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd * 4, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd * 4, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
def forward(self, code):
ACT = F.mish
x = self.CIN(code)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.Cx1(ACT(self.Cx0(x)))
x = self.COUT(x)
return torch.sigmoid(x)
class REncoderLarge(nn.Module):
def __init__(self, dd, ee, ff):
super().__init__()
self.CXX = nn.Conv2d(3, dd, kernel_size=3, padding=1)
self.BXX = nn.BatchNorm2d(dd)
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
self.R0 = ResBlock(dd * 4, ff)
self.R1 = ResBlock(dd * 16, ff)
self.R2 = ResBlock(dd * 64, ff)
self.CZZ = nn.Conv2d(dd * 64, IMG_BITS, kernel_size=3, padding=1)
def forward(self, x):
ACT = F.mish
x = self.BXX(self.CXX(x))
x = x + self.CX1(ACT(self.CX0(x)))
x = F.pixel_unshuffle(x, 2)
x = self.R0(x)
x = F.pixel_unshuffle(x, 2)
x = self.R1(x)
x = F.pixel_unshuffle(x, 2)
x = self.R2(x)
x = self.CZZ(x)
return torch.sigmoid(x)
class RDecoderLarge(nn.Module):
def __init__(self, dd, ee, ff):
super().__init__()
self.CZZ = nn.Conv2d(IMG_BITS, dd * 64, kernel_size=3, padding=1)
self.BZZ = nn.BatchNorm2d(dd * 64)
self.R0 = ResBlock(dd * 64, ff)
self.R1 = ResBlock(dd * 16, ff)
self.R2 = ResBlock(dd * 4, ff)
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
self.CXX = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
def forward(self, x):
ACT = F.mish
x = self.BZZ(self.CZZ(x))
x = self.R0(x)
x = F.pixel_shuffle(x, 2)
x = self.R1(x)
x = F.pixel_shuffle(x, 2)
x = self.R2(x)
x = F.pixel_shuffle(x, 2)
x = x + self.CX1(ACT(self.CX0(x)))
x = self.CXX(x)
return torch.sigmoid(x)
@st.cache
def prepare_model(model_prefix):
gc.collect()
if model_prefix == 'out-v7c_d8_256-224-13bit-OB32x0.5-745':
R_ENCODER, R_DECODER = REncoderSmall(), RDecoderSmall()
else:
if 'd16_512' in model_prefix:
dd, ee, ff = 16, 64, 512
elif 'd32_1024' in model_prefix:
dd, ee, ff = 32, 128, 1024
R_ENCODER = REncoderLarge(dd, ee, ff)
R_DECODER = RDecoderLarge(dd, ee, ff)
encoder = R_ENCODER.eval().to(device)
decoder = R_DECODER.eval().to(device)
encoder.load_state_dict(
torch.load(hf_hub_download(MODEL_REPO, f'{model_prefix}-E.pth')))
decoder.load_state_dict(
torch.load(hf_hub_download(MODEL_REPO, f'{model_prefix}-D.pth')))
return encoder, decoder
def compute_padding(img_shape):
hsize, vsize = (img_shape[1] + 7) // 8 * 8, (img_shape[0] + 7) // 8 * 8
hpad, vpad = hsize - img_shape[1], vsize - img_shape[0]
left, top = hpad // 2, vpad // 2
right, bottom = hpad - left, vpad - top
return left, top, right, bottom
def encode(model_prefix, img, keep_shape):
gc.collect()
encoder, _ = prepare_model(model_prefix)
with torch.no_grad():
img = VF.pil_to_tensor(img.convert("RGB"))
img = VF.convert_image_dtype(img)
img = img.unsqueeze(0).to(device)
img_shape = img.shape[2:]
if keep_shape:
left, top, right, bottom = compute_padding(img_shape)
img = VF.pad(img, [left, top, right, bottom], padding_mode='edge')
else:
img = VF.resize(img, [224, 224])
z = torch.floor(encoder(img) + 0.5)
with io.BytesIO() as buffer:
np.save(buffer, np.packbits(z.cpu().numpy().astype('bool')))
z_b64 = base64.b64encode(buffer.getvalue()).decode()
return json.dumps({
"img_shape": img_shape,
"z_shape": z.shape[2:],
"keep_shape": keep_shape,
"data": z_b64,
})
def decode(model_prefix, z_str):
gc.collect()
_, decoder = prepare_model(model_prefix)
z_json = json.loads(z_str)
with io.BytesIO() as buffer:
buffer.write(base64.b64decode(z_json["data"]))
buffer.seek(0)
z = np.load(buffer)
img_shape = z_json["img_shape"]
z_shape = z_json["z_shape"]
keep_shape = z_json["keep_shape"]
z = np.unpackbits(z)[:IMG_BITS * z_shape[0] * z_shape[1]].astype('float')
z = z.reshape([1, IMG_BITS] + z_shape)
img = decoder(torch.Tensor(z).to(device))
if keep_shape:
left, top, right, bottom = compute_padding(img_shape)
img = img[0, :, top:img.shape[2] - bottom, left:img.shape[3] - right]
else:
img = img[0]
return VF.to_pil_image(img)
st.title("Clip Guided Binary Autoencoder")
st.write(
"Model is from [@BlinkDL](https://huggingface.co/BlinkDL/clip-guided-binary-autoencoder)"
)
model_prefix = st.selectbox('The model to use',
('out-v7c_d8_256-224-13bit-OB32x0.5-745',
'out-v7d_d16_512-224-13bit-OB32x0.5-2487',
'out-v7d_d32_1024-224-13bit-OB32x0.5-5560'))
encoder_tab, decoder_tab = st.tabs(["Encode", "Decode"])
with encoder_tab:
col_in, col_out = st.columns(2)
keep_shape = col_in.checkbox(
'Use original size of input image instead of rescaling (Experimental)')
uploaded_file = col_in.file_uploader('Choose an Image')
if uploaded_file is not None:
image = Image.open(uploaded_file)
col_in.image(image, 'Input Image')
z_str = encode(model_prefix, image, keep_shape)
col_out.write("Encoded to:")
col_out.code(z_str, language=None)
col_out.image(decode(model_prefix, z_str), 'Output Image preview')
with decoder_tab:
col_in, col_out = st.columns(2)
z_str = col_in.text_area('Paste encoded string here:')
if len(z_str) > 0:
image = decode(model_prefix, z_str)
col_out.image(image, 'Output Image')