Spaces:
Sleeping
Sleeping
Spyros Mouselinos
commited on
Commit
·
adc9146
1
Parent(s):
31a7dfb
Init
Browse files- .idea/.gitignore +8 -0
- app.py +6 -0
- euclideagameeval.py +332 -0
- requirements.txt +4 -0
.idea/.gitignore
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Default ignored files
|
| 2 |
+
/shelf/
|
| 3 |
+
/workspace.xml
|
| 4 |
+
# Editor-based HTTP Client requests
|
| 5 |
+
/httpRequests/
|
| 6 |
+
# Datasource local storage ignored files
|
| 7 |
+
/dataSources/
|
| 8 |
+
/dataSources.local.xml
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("EuclideaGameEval")
|
| 6 |
+
launch_gradio_widget(module)
|
euclideagameeval.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Euclidea Game Evaluation Metric."""
|
| 2 |
+
import re
|
| 3 |
+
import datasets
|
| 4 |
+
import evaluate
|
| 5 |
+
import Levenshtein
|
| 6 |
+
import copy
|
| 7 |
+
from sentence_transformers import SentenceTransformer, util
|
| 8 |
+
from scipy.optimize import linear_sum_assignment
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
import itertools
|
| 12 |
+
from itertools import combinations
|
| 13 |
+
|
| 14 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
| 16 |
+
|
| 17 |
+
_DESCRIPTION = """
|
| 18 |
+
Natural Language Match Score: Given a geometric problem and a generated sequence of steps to solve it,
|
| 19 |
+
in natural language, this module computes a matching score between the ground truth and the provided solution.
|
| 20 |
+
|
| 21 |
+
The module works by segmenting the provided solution into steps.
|
| 22 |
+
Then for each step it extracts the used tool and arguments to it.
|
| 23 |
+
Finally it compares the solution steps with the ground truth ones using the Hungarian Matching Algorithm.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
_CITATION = """\
|
| 27 |
+
@misc{mouselinos2024lines,
|
| 28 |
+
title={Beyond Lines and Circles: Unveiling the Geometric Reasoning Gap in Large Language Models},
|
| 29 |
+
author={Spyridon Mouselinos and Henryk Michalewski and Mateusz Malinowski},
|
| 30 |
+
year={2024},
|
| 31 |
+
eprint={2402.03877},
|
| 32 |
+
archivePrefix={arXiv},
|
| 33 |
+
primaryClass={cs.CL}
|
| 34 |
+
}
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
TOOL2IDX = {
|
| 38 |
+
'Perpendicular Tool': 0,
|
| 39 |
+
'Line Tool': 1,
|
| 40 |
+
'Circle Tool': 2,
|
| 41 |
+
'Perpendicular Bisector Tool': 3,
|
| 42 |
+
'Angle Bisector Tool': 4,
|
| 43 |
+
'Parallel Tool': 5,
|
| 44 |
+
'Compass Tool': 6,
|
| 45 |
+
'Intersect Tool': 7,
|
| 46 |
+
'Point Tool': 8,
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
IDX2TOOL = {
|
| 50 |
+
v: k for k, v in TOOL2IDX.items()
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
DEFAULT_THRESHOLD = 0.65
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class GeometryEvaluator:
|
| 57 |
+
def __init__(self,
|
| 58 |
+
responses,
|
| 59 |
+
references):
|
| 60 |
+
|
| 61 |
+
self.references = references
|
| 62 |
+
if isinstance(responses, str):
|
| 63 |
+
responses = [responses]
|
| 64 |
+
self.responses = responses
|
| 65 |
+
|
| 66 |
+
if isinstance(references, str):
|
| 67 |
+
references = [references]
|
| 68 |
+
self.references = references
|
| 69 |
+
|
| 70 |
+
# if isinstance(self.results_tools[0], str):
|
| 71 |
+
# self.results_tools = [[eval(f)] for f in self.results_tools]
|
| 72 |
+
|
| 73 |
+
# if isinstance(self.results_symbols[0], str):
|
| 74 |
+
# self.results_symbols = [[eval(f)] for f in self.results_symbols]
|
| 75 |
+
|
| 76 |
+
def get_symbols(self, text):
|
| 77 |
+
# Define a regular expression to match single or double capital letter words
|
| 78 |
+
pattern = r'\b[A-Z]{1,4}\b'
|
| 79 |
+
|
| 80 |
+
# Find matches in the text using the regular expression and store their positions
|
| 81 |
+
matches = [(match.group(), match.start()) for match in re.finditer(pattern, text)]
|
| 82 |
+
|
| 83 |
+
# Sort the matches based on their positions in the text
|
| 84 |
+
sorted_matches = sorted(matches, key=lambda x: x[1])
|
| 85 |
+
|
| 86 |
+
# Extract the matched elements and return them in order
|
| 87 |
+
elements = [match[0] for match in sorted_matches]
|
| 88 |
+
|
| 89 |
+
return elements
|
| 90 |
+
|
| 91 |
+
def compare_symbols(self, history, new):
|
| 92 |
+
unique_elements = set(new) - set(history)
|
| 93 |
+
return list(unique_elements)
|
| 94 |
+
|
| 95 |
+
def check_word(self, word, sentence):
|
| 96 |
+
pattern = r'\b' + re.escape(word) + r'\b'
|
| 97 |
+
return bool(re.search(pattern, sentence, re.IGNORECASE))
|
| 98 |
+
|
| 99 |
+
def annotate_solutions(self, step_solutions, toolset, initial_symbols=None):
|
| 100 |
+
"""
|
| 101 |
+
Annotates solutions according to the tool used.
|
| 102 |
+
Keeps track of emitted symbols at each tool round
|
| 103 |
+
Heuristic method.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
keyword_2_tool = {
|
| 107 |
+
'circle': ['Circle Tool'],
|
| 108 |
+
'line': ['Line Tool'],
|
| 109 |
+
'point': ['Point Tool'],
|
| 110 |
+
'intersect': ['Intersect Tool'],
|
| 111 |
+
'bisect': ['Perpendicular Bisector Tool', 'Angle Bisector Tool'],
|
| 112 |
+
'midpoint': ['Perpendicular Bisector Tool', 'Perpendicular Tool'],
|
| 113 |
+
'angle': ['Angle Bisector Tool'],
|
| 114 |
+
'vertical': ['Perpendicular Tool'],
|
| 115 |
+
'perpendicular': ['Perpendicular Bisector Tool', 'Perpendicular Tool'],
|
| 116 |
+
'parallel': ['Parallel Tool'],
|
| 117 |
+
'compass': ['Compass Tool'],
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
step_solutions = [f for f in step_solutions.split('\n') if len(f) > 2]
|
| 121 |
+
num_solutions = len(step_solutions)
|
| 122 |
+
refined_solutions = []
|
| 123 |
+
gt_tools = []
|
| 124 |
+
history_symbols = initial_symbols if initial_symbols is not None else []
|
| 125 |
+
per_step_symbols = [copy.deepcopy(history_symbols)]
|
| 126 |
+
for i in range(num_solutions):
|
| 127 |
+
current_solution = copy.deepcopy(step_solutions[i])
|
| 128 |
+
current_solution = current_solution.lower().strip()
|
| 129 |
+
if ',' in current_solution:
|
| 130 |
+
current_solution = current_solution[:current_solution.find(',')]
|
| 131 |
+
### Voting classifier ###
|
| 132 |
+
possible_tools = np.zeros(shape=(9,)) # 9 Tools
|
| 133 |
+
for keyword, tools in keyword_2_tool.items():
|
| 134 |
+
if self.check_word(keyword, current_solution):
|
| 135 |
+
for tool in tools:
|
| 136 |
+
if tool in toolset:
|
| 137 |
+
possible_tools[TOOL2IDX[tool]] += 1
|
| 138 |
+
### If no tool ###
|
| 139 |
+
if np.sum(possible_tools) == 0:
|
| 140 |
+
continue
|
| 141 |
+
### Take the smallest id as the most probable ###
|
| 142 |
+
tool_name = IDX2TOOL[np.argmax(possible_tools)]
|
| 143 |
+
refined_solutions.append(f'<{tool_name}>{step_solutions[i]}')
|
| 144 |
+
gt_tools.append(tool_name)
|
| 145 |
+
### Now find (if any) associated points and resulting symbols from each operation ###
|
| 146 |
+
emitted_symbols = self.get_symbols(step_solutions[i])
|
| 147 |
+
new_symbols = self.compare_symbols(history_symbols, emitted_symbols)
|
| 148 |
+
if len(new_symbols) > 0:
|
| 149 |
+
history_symbols += new_symbols
|
| 150 |
+
per_step_symbols.append(new_symbols)
|
| 151 |
+
refined_solutions = '\n'.join(refined_solutions)
|
| 152 |
+
return refined_solutions, gt_tools, per_step_symbols
|
| 153 |
+
|
| 154 |
+
def format_solutions(self, solution):
|
| 155 |
+
"""
|
| 156 |
+
qs: Part of the solution that usually is an assumption starting with Let.
|
| 157 |
+
We move this to the question instead.
|
| 158 |
+
"""
|
| 159 |
+
try:
|
| 160 |
+
solution = solution.split('\n\n')[1].split('\n\n')[0]
|
| 161 |
+
except:
|
| 162 |
+
pass
|
| 163 |
+
kw = None
|
| 164 |
+
if 'Let' in solution:
|
| 165 |
+
kw = 'Let'
|
| 166 |
+
elif 'Given' in solution:
|
| 167 |
+
kw = 'Given'
|
| 168 |
+
if kw is not None:
|
| 169 |
+
start_idx = solution.find(kw)
|
| 170 |
+
### Fix for one weird level ###
|
| 171 |
+
offset = solution.find('{\displaystyle AB>AO,AC>AO}')
|
| 172 |
+
if offset != -1:
|
| 173 |
+
qs = 'Let O be the vertex of the angle and A the given point. Let B, C be abitary points on each ray, such that AB is bigger than AO and AC is bigger than AO.'
|
| 174 |
+
solution = 'Construct circle O with center O and radius OA.\nConstruct circle B with center B and radius BA, intersecting circle O at F.\nConstruct circle B with center C and radius CA, intersecting circle O at G.\nConstruct line FG, intersecting line OB at H, intersecting line OC at I.\nConstruct line AH.\nConstruct line AI.'
|
| 175 |
+
return solution, qs
|
| 176 |
+
else:
|
| 177 |
+
possible_end_idxs = [solution.find(f) for f in ['.', 'Construct', 'Draw', 'With', 'Point', 'Starting']]
|
| 178 |
+
possible_end_idxs = min([f for f in possible_end_idxs if f != -1]) + 1
|
| 179 |
+
qs = solution[start_idx:possible_end_idxs]
|
| 180 |
+
solution_ = solution[possible_end_idxs:]
|
| 181 |
+
if solution_.startswith('onstruct'):
|
| 182 |
+
possible_end_idxs -= 1
|
| 183 |
+
qs = solution[start_idx:possible_end_idxs].strip()
|
| 184 |
+
solution = solution[possible_end_idxs:]
|
| 185 |
+
else:
|
| 186 |
+
qs = None
|
| 187 |
+
solution = solution.replace('\n\n', '\n')
|
| 188 |
+
return solution, qs
|
| 189 |
+
|
| 190 |
+
def format_tools(self, tools):
|
| 191 |
+
proper_tools = []
|
| 192 |
+
distances = np.zeros(shape=(9,))
|
| 193 |
+
for tool in tools:
|
| 194 |
+
if tool == 'Move Tool':
|
| 195 |
+
continue
|
| 196 |
+
### Look over the correct tools ###
|
| 197 |
+
for proper_tool_name, proper_tool_idx in TOOL2IDX.items():
|
| 198 |
+
distances[proper_tool_idx] = Levenshtein.distance(tool.lower(), proper_tool_name.lower())
|
| 199 |
+
### Find the tool with the correct (minimum distance) ###
|
| 200 |
+
proper_tools.append(IDX2TOOL[np.argmin(distances)])
|
| 201 |
+
return proper_tools
|
| 202 |
+
|
| 203 |
+
def decompose_example(self, solution, initial_symbols):
|
| 204 |
+
s, _ = self.format_solutions(solution)
|
| 205 |
+
tools = [k for k in TOOL2IDX.keys()]
|
| 206 |
+
response_solution, response_tools, response_symbols = self.annotate_solutions(s, tools, initial_symbols)
|
| 207 |
+
return response_solution, (response_tools, response_symbols)
|
| 208 |
+
|
| 209 |
+
def evaluate(self):
|
| 210 |
+
instance_responses = []
|
| 211 |
+
instance_tools = []
|
| 212 |
+
instance_symbols = []
|
| 213 |
+
for generated_solution in self.responses:
|
| 214 |
+
if len(generated_solution) < 10:
|
| 215 |
+
continue
|
| 216 |
+
response_solution, (response_tools, response_symbols) = self.decompose_example(
|
| 217 |
+
solution=generated_solution,
|
| 218 |
+
initial_symbols=None)
|
| 219 |
+
instance_responses.append(response_solution)
|
| 220 |
+
instance_tools.append(response_tools)
|
| 221 |
+
instance_symbols.append(response_symbols)
|
| 222 |
+
return instance_responses, instance_tools, instance_symbols
|
| 223 |
+
|
| 224 |
+
def best_matching_subset(self, response, ground_truth, all_cosine_scores):
|
| 225 |
+
max_score = float('-inf')
|
| 226 |
+
best_subset = None
|
| 227 |
+
|
| 228 |
+
# Iterate over all subsets of response of the required size
|
| 229 |
+
for subset_indices in combinations(range(len(response)), len(ground_truth)):
|
| 230 |
+
# Select the scores for the current subset
|
| 231 |
+
subset_scores = all_cosine_scores[np.ix_(subset_indices, range(len(ground_truth)))]
|
| 232 |
+
|
| 233 |
+
# Convert to negative for the cost matrix
|
| 234 |
+
cost_matrix = -subset_scores
|
| 235 |
+
|
| 236 |
+
# Solve the assignment problem
|
| 237 |
+
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
| 238 |
+
total_score = -cost_matrix[row_ind, col_ind].sum()
|
| 239 |
+
|
| 240 |
+
# Update max_score and best_subset if this is the best so far
|
| 241 |
+
if total_score > max_score:
|
| 242 |
+
max_score = total_score
|
| 243 |
+
best_subset = [response[i] for i in subset_indices]
|
| 244 |
+
if best_subset is None:
|
| 245 |
+
return 0, [''] * len(ground_truth)
|
| 246 |
+
return max_score, best_subset
|
| 247 |
+
|
| 248 |
+
def estimate_pass_at_k(self, num_samples, num_correct, k, ):
|
| 249 |
+
"""
|
| 250 |
+
Estimates pass@k of each problem and returns them in an array.
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
+
def estimator(n: int, c: int, k: int) -> float:
|
| 254 |
+
"""
|
| 255 |
+
Calculates 1 - comb(n - c, k) / comb(n, k).
|
| 256 |
+
"""
|
| 257 |
+
if n - c < k:
|
| 258 |
+
return 1.0
|
| 259 |
+
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
|
| 260 |
+
|
| 261 |
+
if isinstance(num_samples, int):
|
| 262 |
+
num_samples_it = itertools.repeat(num_samples, len(num_correct))
|
| 263 |
+
else:
|
| 264 |
+
assert len(num_samples) == len(num_correct)
|
| 265 |
+
num_samples_it = iter(num_samples)
|
| 266 |
+
|
| 267 |
+
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
|
| 268 |
+
|
| 269 |
+
def nl_overlap(self, response, ground_truth):
|
| 270 |
+
response_split = response.split('\n')
|
| 271 |
+
ground_truth_split = ground_truth.split('\n')
|
| 272 |
+
if len(response_split) < len(ground_truth_split):
|
| 273 |
+
return 0
|
| 274 |
+
###################################################################################
|
| 275 |
+
response_emb = model.encode(response_split, show_progress_bar=False, batch_size=len(response_split),
|
| 276 |
+
convert_to_tensor=True, device=DEVICE)
|
| 277 |
+
gt_emb = model.encode(ground_truth_split, show_progress_bar=False, batch_size=len(ground_truth_split),
|
| 278 |
+
convert_to_tensor=True, device=DEVICE)
|
| 279 |
+
emb_score = util.pytorch_cos_sim(response_emb, gt_emb).cpu().numpy()
|
| 280 |
+
sent_score, best_subset = self.best_matching_subset(response_split, ground_truth_split, emb_score)
|
| 281 |
+
assert len(best_subset) == len(ground_truth_split)
|
| 282 |
+
r = model.encode('\n'.join(best_subset), show_progress_bar=False, batch_size=1,
|
| 283 |
+
convert_to_tensor=True, device=DEVICE)
|
| 284 |
+
g = model.encode(ground_truth, show_progress_bar=False, batch_size=1,
|
| 285 |
+
convert_to_tensor=True, device=DEVICE)
|
| 286 |
+
sg = util.pytorch_cos_sim(r, g).cpu().numpy()[0][0]
|
| 287 |
+
new_new_score = sent_score / len(best_subset) * sg
|
| 288 |
+
return float(new_new_score)
|
| 289 |
+
|
| 290 |
+
def test_1(self, instance_responses):
|
| 291 |
+
references = self.references
|
| 292 |
+
raw_scores = []
|
| 293 |
+
for j in range(len(instance_responses)):
|
| 294 |
+
scores = self.nl_overlap(instance_responses[j], references[0])
|
| 295 |
+
raw_scores.append(scores)
|
| 296 |
+
return raw_scores
|
| 297 |
+
|
| 298 |
+
def calc_thresh_pass(self, raw_scores, threshold=0.65):
|
| 299 |
+
r = 0
|
| 300 |
+
for score in raw_scores:
|
| 301 |
+
r += 1.0 * (score > threshold)
|
| 302 |
+
pass1 = self.estimate_pass_at_k([len(raw_scores)], [r], 1).mean()
|
| 303 |
+
pass10 = self.estimate_pass_at_k([len(raw_scores)], [r], 10).mean()
|
| 304 |
+
pass25 = self.estimate_pass_at_k([len(raw_scores)], [r], 25).mean()
|
| 305 |
+
pass50 = self.estimate_pass_at_k([len(raw_scores)], [r], 50).mean()
|
| 306 |
+
return pass1, pass10, pass25, pass50
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION)
|
| 310 |
+
class EuclideaGameEval(evaluate.Metric):
|
| 311 |
+
def _info(self):
|
| 312 |
+
return evaluate.MetricInfo(
|
| 313 |
+
description=_DESCRIPTION,
|
| 314 |
+
citation=_CITATION,
|
| 315 |
+
features=datasets.Features(
|
| 316 |
+
{
|
| 317 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
| 318 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
| 319 |
+
}
|
| 320 |
+
)
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
def _compute(self, predictions, references):
|
| 324 |
+
ge = GeometryEvaluator(responses=predictions, references=references)
|
| 325 |
+
tmp_, _, _ = ge.evaluate()
|
| 326 |
+
pass1, pass10, pass25, pass50 = ge.calc_thresh_pass(ge.test_1(tmp_), DEFAULT_THRESHOLD)
|
| 327 |
+
return {
|
| 328 |
+
"pass@1": pass1,
|
| 329 |
+
"pass@10": pass10,
|
| 330 |
+
"pass@25": pass25,
|
| 331 |
+
"pass@50": pass50
|
| 332 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@a4bdc10c48a450b978d91389a48dbb5297835c7d
|
| 2 |
+
scikit-learn
|
| 3 |
+
scipy
|
| 4 |
+
Levenshtein
|