multi-diffusion / app.py
Blane187's picture
Update app.py
ad89925 verified
import gradio as gr
import os
import sys
from pathlib import Path
from all_models import models
from externalmod import gr_Interface_load
from prompt_extend import extend_prompt
from random import randint
import asyncio
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
inference_timeout = 300
MAX_SEED = 2**32-1
current_model = models[0]
text_gen1 = extend_prompt
#text_gen1=gr.Interface.load("spaces/phenomenon1981/MagicPrompt-Stable-Diffusion")
#text_gen1=gr.Interface.load("spaces/Yntec/prompt-extend")
#text_gen1=gr.Interface.load("spaces/daspartho/prompt-extend")
#text_gen1=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]
def text_it1(inputs, text_gen1=text_gen1):
go_t1 = text_gen1(inputs)
return(go_t1)
def set_model(current_model):
current_model = models[current_model]
return gr.update(label=(f"{current_model}"))
def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed): #negative_prompt,
#proc1 = models2[model_choice]
#output1 = proc1(inputs)
output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
#negative_prompt=negative_prompt
return (output1)
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
from pathlib import Path
kwargs = {}
if height is not None and height >= 256: kwargs["height"] = height
if width is not None and width >= 256: kwargs["width"] = width
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
noise = ""
if seed >= 0: kwargs["seed"] = seed
else:
rand = randint(1, 500)
for i in range(rand):
noise += " "
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except (Exception, asyncio.TimeoutError) as e:
print(e)
print(f"Task timed out: {models2[model_index]}")
if not task.done(): task.cancel()
result = None
if task.done() and result is not None:
with lock:
png_path = "image.png"
result.save(png_path)
image = str(Path(png_path).resolve())
return image
return None
def gen_fn(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {models2[model_index]}")
result = None
finally:
loop.close()
return result
css="""
#container { max-width: 1200px; margin: 0 auto; !important; }
.output { width=112px; height=112px; !important; }
.gallery { width=100%; min_height=768px; !important; }
.guide { text-align: center; !important; }
"""
with gr.Blocks(theme='Hev832/Applio', fill_width=True) as myface:
with gr.Row():
with gr.Column(scale=100):
#Model selection dropdown
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)
with gr.Row():
with gr.Column(scale=100):
with gr.Group():
magic1 = gr.Textbox(label="Your Prompt", lines=4) #Positive
with gr.Accordion("Advanced", open=False, visible=True):
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
with gr.Row():
width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
#with gr.Column(scale=100):
#negative_prompt=gr.Textbox(label="Negative Prompt", lines=1)
gr.HTML("""<style> .gr-button {
color: #ffffff !important;
text-shadow: 1px 1px 0 rgba(0, 0, 0, 1) !important;
background-image: linear-gradient(#76635a, #d2a489) !important;
border-radius: 24px !important;
border: solid 1px !important;
border-top-color: #ffc99f !important;
border-right-color: #000000 !important;
border-bottom-color: #000000 !important;
border-left-color: #ffc99f !important;
padding: 6px 30px;
}
.gr-button:active {
color: #ffc99f !important;
font-size: 98% !important;
text-shadow: 0px 0px 0 rgba(0, 0, 0, 1) !important;
background-image: linear-gradient(#d2a489, #76635a) !important;
border-top-color: #000000 !important;
border-right-color: #ffffff !important;
border-bottom-color: #ffffff !important;
border-left-color: #000000 !important;
}
.gr-button:hover {
filter: brightness(130%);
}
</style>""")
run = gr.Button("Generate Image")
with gr.Row():
with gr.Column():
output1 = gr.Image(label=(f"{current_model}"), show_download_button=True, elem_classes="output",
interactive=False, show_share_button=False, format=".png")
with gr.Row():
with gr.Column(scale=50):
input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2)
see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above")
use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above")
def short_prompt(inputs):
return (inputs)
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
#run.click(send_it1, inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed], outputs=[output1])
gr.on(
triggers=[run.click, magic1.submit],
fn=send_it1,
inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
outputs=[output1],
)
use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
myface.queue(default_concurrency_limit=200, max_size=200)
myface.launch(show_api=False, share=True, max_threads=400)