Spaces:
Sleeping
Sleeping
gorkemgoknar
commited on
Commit
•
48423a0
1
Parent(s):
23f5658
will upload non-recoverable errors so we can debug
Browse files
app.py
CHANGED
@@ -13,6 +13,10 @@ os.environ["COQUI_TOS_AGREED"] = "1"
|
|
13 |
# langid is used to detect language for longer text
|
14 |
# Most users expect text to be their own language, there is checkbox to disable it
|
15 |
import langid
|
|
|
|
|
|
|
|
|
16 |
|
17 |
import gradio as gr
|
18 |
from scipy.io.wavfile import write
|
@@ -68,6 +72,8 @@ DEVICE_ASSERT_DETECTED=0
|
|
68 |
DEVICE_ASSERT_PROMPT=None
|
69 |
DEVICE_ASSERT_LANG=None
|
70 |
|
|
|
|
|
71 |
#supported_languages=["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn"]
|
72 |
supported_languages=config.languages
|
73 |
|
@@ -189,7 +195,19 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
189 |
t_latent=time.time()
|
190 |
|
191 |
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
latent_calculation_time = time.time() - t_latent
|
194 |
#metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
195 |
|
@@ -212,7 +230,6 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
212 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
213 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
214 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
215 |
-
|
216 |
except RuntimeError as e :
|
217 |
if "device-side assert" in str(e):
|
218 |
# cannot do anything on cuda device side error, need tor estart
|
@@ -223,13 +240,50 @@ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_clea
|
|
223 |
DEVICE_ASSERT_DETECTED=1
|
224 |
DEVICE_ASSERT_PROMPT=prompt
|
225 |
DEVICE_ASSERT_LANG=language
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
# HF Space specific.. This error is unrecoverable need to restart space
|
229 |
api.restart_space(repo_id=repo_id)
|
230 |
else:
|
231 |
print("RuntimeError: non device-side assert error:", str(e))
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
return (
|
234 |
gr.make_waveform(
|
235 |
audio="output.wav",
|
|
|
13 |
# langid is used to detect language for longer text
|
14 |
# Most users expect text to be their own language, there is checkbox to disable it
|
15 |
import langid
|
16 |
+
import base64
|
17 |
+
import csv
|
18 |
+
from io import StringIO
|
19 |
+
import datetime
|
20 |
|
21 |
import gradio as gr
|
22 |
from scipy.io.wavfile import write
|
|
|
72 |
DEVICE_ASSERT_PROMPT=None
|
73 |
DEVICE_ASSERT_LANG=None
|
74 |
|
75 |
+
|
76 |
+
|
77 |
#supported_languages=["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn"]
|
78 |
supported_languages=config.languages
|
79 |
|
|
|
195 |
t_latent=time.time()
|
196 |
|
197 |
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
198 |
+
try:
|
199 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav)
|
200 |
+
except Exception as e:
|
201 |
+
if "Failed to decode" in str(e):
|
202 |
+
print("Speaker encoding error", str(e))
|
203 |
+
gr.Warning("It appears something wrong with reference, did you unmute your microphone?")
|
204 |
+
return (
|
205 |
+
None,
|
206 |
+
None,
|
207 |
+
None,
|
208 |
+
None,
|
209 |
+
)
|
210 |
+
|
211 |
latent_calculation_time = time.time() - t_latent
|
212 |
#metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
213 |
|
|
|
230 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
231 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
232 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
|
|
233 |
except RuntimeError as e :
|
234 |
if "device-side assert" in str(e):
|
235 |
# cannot do anything on cuda device side error, need tor estart
|
|
|
240 |
DEVICE_ASSERT_DETECTED=1
|
241 |
DEVICE_ASSERT_PROMPT=prompt
|
242 |
DEVICE_ASSERT_LANG=language
|
243 |
+
|
244 |
+
# just before restarting save what caused the issue so we can handle it in future
|
245 |
+
# Uploading Error data only happens for unrecovarable error
|
246 |
+
error_time = datetime.datetime.now().strftime('%d-%m-%Y-%H:%M:%S')
|
247 |
+
error_data = [error_time, prompt, language, audio_file_pth, mic_file_path, use_mic, voice_cleanup, no_lang_auto_detect, agree]
|
248 |
+
error_data = [str(e) if type(e)!=str else e for e in error_data]
|
249 |
+
print(error_data)
|
250 |
+
print(speaker_wav)
|
251 |
+
write_io = StringIO()
|
252 |
+
csv.writer(write_io).writerows(error_data)
|
253 |
+
csv_upload= write_io.getvalue().encode()
|
254 |
+
|
255 |
+
filename = error_time+"_" + str(uuid.uuid4()) +".csv"
|
256 |
+
print("Writing error csv")
|
257 |
+
error_api = HfApi()
|
258 |
+
error_api.upload_file(
|
259 |
+
path_or_fileobj=csv_upload,
|
260 |
+
path_in_repo=filename,
|
261 |
+
repo_id="coqui/xtts-flagged-dataset",
|
262 |
+
repo_type="dataset",
|
263 |
+
)
|
264 |
|
265 |
+
#speaker_wav
|
266 |
+
print("Writing error reference audio")
|
267 |
+
speaker_filename = error_time+"_reference_"+ str(uuid.uuid4()) +".wav"
|
268 |
+
error_api = HfApi()
|
269 |
+
error_api.upload_file(
|
270 |
+
path_or_fileobj=speaker_wav,
|
271 |
+
path_in_repo=speaker_filename,
|
272 |
+
repo_id="coqui/xtts-flagged-dataset",
|
273 |
+
repo_type="dataset",
|
274 |
+
)
|
275 |
+
|
276 |
# HF Space specific.. This error is unrecoverable need to restart space
|
277 |
api.restart_space(repo_id=repo_id)
|
278 |
else:
|
279 |
print("RuntimeError: non device-side assert error:", str(e))
|
280 |
+
gr.Warning("Something unexpected happened please retry again.")
|
281 |
+
return (
|
282 |
+
None,
|
283 |
+
None,
|
284 |
+
None,
|
285 |
+
None,
|
286 |
+
)
|
287 |
return (
|
288 |
gr.make_waveform(
|
289 |
audio="output.wav",
|