Spaces:
Sleeping
Sleeping
| # Setup and Installation | |
| import torch | |
| print("🖥️ System Check:") | |
| print(f"CUDA available: {torch.cuda.is_available()}") | |
| if torch.cuda.is_available(): | |
| print(f"GPU device: {torch.cuda.get_device_name(0)}") | |
| print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") | |
| else: | |
| print("⚠️ No GPU detected - BioGPT will run on CPU") | |
| print("\n🔧 Loading required packages...") | |
| # Import Libraries | |
| import os | |
| import re | |
| import torch | |
| import warnings | |
| import numpy as np | |
| import faiss # FAISS for vector search | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| pipeline, | |
| BitsAndBytesConfig | |
| ) | |
| from sentence_transformers import SentenceTransformer | |
| from typing import List, Dict, Optional | |
| import time | |
| from datetime import datetime | |
| import json | |
| import pickle | |
| # Suppress warnings for cleaner output | |
| warnings.filterwarnings('ignore') | |
| print("📚 Libraries imported successfully!") | |
| print(f"🔍 FAISS version: {faiss.__version__}") | |
| print("🎯 Using FAISS for vector search") | |
| # BioGPT Medical Chatbot Class | |
| class ColabBioGPTChatbot: | |
| def __init__(self, use_gpu=True, use_8bit=True): | |
| """Initialize BioGPT chatbot optimized for deployment""" | |
| print("🏥 Initializing Professional BioGPT Medical Chatbot...") | |
| # Force CPU for HF Spaces if needed | |
| self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu" | |
| self.use_8bit = use_8bit and torch.cuda.is_available() | |
| print(f"🖥️ Using device: {self.device}") | |
| if self.use_8bit: | |
| print("💾 Using 8-bit quantization for memory efficiency") | |
| # Setup components | |
| self.setup_embeddings() | |
| self.setup_faiss_index() | |
| self.setup_biogpt() | |
| # Conversation tracking | |
| self.conversation_history = [] | |
| self.knowledge_chunks = [] | |
| print("✅ BioGPT Medical Chatbot ready for professional medical assistance!") | |
| def setup_embeddings(self): | |
| """Setup medical-optimized embeddings""" | |
| print("🔧 Loading medical embeddings...") | |
| try: | |
| # Use a smaller, more efficient model for deployment | |
| self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
| self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension() | |
| print(f"✅ Embeddings loaded (dimension: {self.embedding_dim})") | |
| self.use_embeddings = True | |
| except Exception as e: | |
| print(f"⚠️ Embeddings failed: {e}") | |
| self.embedding_model = None | |
| self.embedding_dim = 384 | |
| self.use_embeddings = False | |
| def setup_faiss_index(self): | |
| """Setup faiss for CPU-based vector search""" | |
| print("🔧 Setting up FAISS vector database...") | |
| try: | |
| print('Using CPU FAISS index for maximum compatibility') | |
| self.faiss_index = faiss.IndexFlatIP(self.embedding_dim) | |
| self.use_gpu_faiss = False | |
| self.faiss_ready = True | |
| self.collection = self.faiss_index | |
| print("✅ FAISS CPU index initialized successfully") | |
| except Exception as e: | |
| print(f"❌ FAISS setup failed: {e}") | |
| self.faiss_index = None | |
| self.faiss_ready = False | |
| self.collection = None | |
| def setup_biogpt(self): | |
| """Setup BioGPT model with optimizations for deployment""" | |
| print("🧠 Loading BioGPT model...") | |
| # Try BioGPT first, fallback to smaller models if needed | |
| model_options = [ | |
| "microsoft/BioGPT-Large", | |
| "microsoft/BioGPT", # Smaller version | |
| "microsoft/DialoGPT-medium", # Fallback | |
| "gpt2" # Final fallback | |
| ] | |
| for model_name in model_options: | |
| try: | |
| print(f" Attempting to load: {model_name}") | |
| # Setup quantization config for memory efficiency | |
| if self.use_8bit and "BioGPT" in model_name: | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_8bit=True, | |
| llm_int8_threshold=6.0, | |
| llm_int8_has_fp16_weight=False, | |
| ) | |
| else: | |
| quantization_config = None | |
| # Load tokenizer | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Set padding token | |
| if self.tokenizer.pad_token is None: | |
| self.tokenizer.pad_token = self.tokenizer.eos_token | |
| # Load model with proper settings for deployment | |
| start_time = time.time() | |
| model_kwargs = { | |
| "torch_dtype": torch.float16 if self.device == "cuda" else torch.float32, | |
| "trust_remote_code": True, | |
| "low_cpu_mem_usage": True, # Important for deployment | |
| } | |
| if quantization_config: | |
| model_kwargs["quantization_config"] = quantization_config | |
| model_kwargs["device_map"] = "auto" | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| **model_kwargs | |
| ) | |
| # Move to device if not using device_map | |
| if self.device == "cuda" and quantization_config is None: | |
| self.model = self.model.to(self.device) | |
| load_time = time.time() - start_time | |
| print(f"✅ {model_name} loaded successfully! ({load_time:.1f} seconds)") | |
| # Test the model | |
| self.test_model() | |
| break # Success, exit the loop | |
| except Exception as e: | |
| print(f"❌ {model_name} loading failed: {e}") | |
| if model_name == model_options[-1]: # Last option failed | |
| print("❌ All models failed to load") | |
| self.model = None | |
| self.tokenizer = None | |
| continue | |
| def test_model(self): | |
| """Test the loaded model with a simple query""" | |
| print("🧪 Testing model...") | |
| try: | |
| test_prompt = "Fever in children can be caused by" | |
| inputs = self.tokenizer(test_prompt, return_tensors="pt") | |
| if self.device == "cuda": | |
| inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = self.model.generate( | |
| **inputs, | |
| max_new_tokens=20, | |
| do_sample=True, | |
| temperature=0.7, | |
| pad_token_id=self.tokenizer.eos_token_id | |
| ) | |
| response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| print(f"✅ Model test successful!") | |
| print(f" Test response: {response}") | |
| except Exception as e: | |
| print(f"⚠️ Model test failed: {e}") | |
| def load_medical_data(self, file_path: str): | |
| """Load and process medical data with progress tracking""" | |
| print(f"📖 Loading medical data from {file_path}...") | |
| try: | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| text = f.read() | |
| print(f"📄 File loaded: {len(text):,} characters") | |
| except FileNotFoundError: | |
| print(f"❌ File {file_path} not found!") | |
| return False | |
| except Exception as e: | |
| print(f"❌ Error loading file: {e}") | |
| return False | |
| # Create chunks optimized for medical content | |
| print("📝 Creating medical-optimized chunks...") | |
| chunks = self.create_medical_chunks(text) | |
| print(f"📋 Created {len(chunks)} medical chunks") | |
| self.knowledge_chunks = chunks | |
| # Generate embeddings with progress and add to FAISS index | |
| if self.use_embeddings and self.embedding_model and self.faiss_ready: | |
| return self.generate_embeddings_with_progress(chunks) | |
| print("✅ Medical data loaded (text search mode)") | |
| return True | |
| def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]: | |
| """Create medically-optimized text chunks""" | |
| chunks = [] | |
| # Split by medical sections first | |
| medical_sections = self.split_by_medical_sections(text) | |
| chunk_id = 0 | |
| for section in medical_sections: | |
| if len(section.split()) > chunk_size: | |
| # Split large sections by sentences | |
| sentences = re.split(r'[.!?]+', section) | |
| current_chunk = "" | |
| for sentence in sentences: | |
| sentence = sentence.strip() | |
| if not sentence: | |
| continue | |
| if len(current_chunk.split()) + len(sentence.split()) < chunk_size: | |
| current_chunk += sentence + ". " | |
| else: | |
| if current_chunk.strip(): | |
| chunks.append({ | |
| 'id': chunk_id, | |
| 'text': current_chunk.strip(), | |
| 'medical_focus': self.identify_medical_focus(current_chunk) | |
| }) | |
| chunk_id += 1 | |
| current_chunk = sentence + ". " | |
| if current_chunk.strip(): | |
| chunks.append({ | |
| 'id': chunk_id, | |
| 'text': current_chunk.strip(), | |
| 'medical_focus': self.identify_medical_focus(current_chunk) | |
| }) | |
| chunk_id += 1 | |
| else: | |
| chunks.append({ | |
| 'id': chunk_id, | |
| 'text': section, | |
| 'medical_focus': self.identify_medical_focus(section) | |
| }) | |
| chunk_id += 1 | |
| return chunks | |
| def split_by_medical_sections(self, text: str) -> List[str]: | |
| """Split text by medical sections""" | |
| # Look for medical section headers | |
| section_patterns = [ | |
| r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n', | |
| r'\n\s*\d+\.\s+', # Numbered sections | |
| r'\n\n+' # Paragraph breaks | |
| ] | |
| sections = [text] | |
| for pattern in section_patterns: | |
| new_sections = [] | |
| for section in sections: | |
| splits = re.split(pattern, section, flags=re.IGNORECASE) | |
| new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100]) | |
| sections = new_sections | |
| return sections | |
| def identify_medical_focus(self, text: str) -> str: | |
| """Identify the medical focus of a text chunk""" | |
| text_lower = text.lower() | |
| # Medical categories | |
| categories = { | |
| 'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'], | |
| 'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'], | |
| 'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'], | |
| 'emergency': ['emergency', 'urgent', 'serious', 'hospital'], | |
| 'prevention': ['prevention', 'vaccine', 'immunization', 'avoid'] | |
| } | |
| for category, keywords in categories.items(): | |
| if any(keyword in text_lower for keyword in keywords): | |
| return category | |
| return 'general_medical' | |
| def generate_embeddings_with_progress(self, chunks: List[Dict]) -> bool: | |
| """Generate embeddings with progress tracking and add to FAISS index""" | |
| print("🔮 Generating medical embeddings and adding to FAISS index...") | |
| if not self.embedding_model or not self.faiss_index: | |
| print("❌ Embedding model or FAISS index not available.") | |
| return False | |
| try: | |
| texts = [chunk['text'] for chunk in chunks] | |
| # Generate embeddings in batches with progress | |
| batch_size = 32 | |
| all_embeddings = [] | |
| for i in range(0, len(texts), batch_size): | |
| batch_texts = texts[i:i+batch_size] | |
| batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False) | |
| all_embeddings.extend(batch_embeddings) | |
| # Show progress | |
| progress = min(i + batch_size, len(texts)) | |
| print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r') | |
| print(f"\n ✅ Generated embeddings for {len(texts)} chunks") | |
| # Add embeddings to FAISS index | |
| print("💾 Adding embeddings to FAISS index...") | |
| self.faiss_index.add(np.array(all_embeddings)) | |
| print("✅ Medical embeddings added to FAISS index successfully!") | |
| return True | |
| except Exception as e: | |
| print(f"❌ Embedding generation or FAISS add failed: {e}") | |
| return False | |
| def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]: | |
| """Retrieve relevant medical context using embeddings or keyword search""" | |
| if self.use_embeddings and self.embedding_model and self.faiss_ready: | |
| try: | |
| # Generate query embedding | |
| query_embedding = self.embedding_model.encode([query]) | |
| # Search for similar content in FAISS index | |
| distances, indices = self.faiss_index.search(np.array(query_embedding), n_results) | |
| # Retrieve the corresponding chunks | |
| context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1] | |
| if context_chunks: | |
| return context_chunks | |
| except Exception as e: | |
| print(f"⚠️ Embedding search failed: {e}") | |
| # Fallback to keyword search | |
| print("⚠️ Falling back to keyword search.") | |
| return self.keyword_search_medical(query, n_results) | |
| def keyword_search_medical(self, query: str, n_results: int) -> List[str]: | |
| """Medical-focused keyword search""" | |
| if not self.knowledge_chunks: | |
| return [] | |
| query_words = set(query.lower().split()) | |
| chunk_scores = [] | |
| for chunk_info in self.knowledge_chunks: | |
| chunk_text = chunk_info['text'] | |
| chunk_words = set(chunk_text.lower().split()) | |
| # Calculate relevance score | |
| word_overlap = len(query_words.intersection(chunk_words)) | |
| base_score = word_overlap / len(query_words) if query_words else 0 | |
| # Boost medical content | |
| medical_boost = 0 | |
| if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']: | |
| medical_boost = 0.5 | |
| final_score = base_score + medical_boost | |
| if final_score > 0: | |
| chunk_scores.append((final_score, chunk_text)) | |
| # Return top matches | |
| chunk_scores.sort(reverse=True) | |
| return [chunk for _, chunk in chunk_scores[:n_results]] | |
| def generate_biogpt_response(self, context: str, query: str) -> str: | |
| """Generate medical response using BioGPT only""" | |
| if not self.model or not self.tokenizer: | |
| return "⚠️ Medical AI model not available. This chatbot requires BioGPT for accurate medical information. Please check the setup or try restarting." | |
| try: | |
| # Create medical-focused prompt | |
| prompt = f"""Medical Context: {context[:800]} | |
| Question: {query} | |
| Medical Answer:""" | |
| # Tokenize input | |
| inputs = self.tokenizer( | |
| prompt, | |
| return_tensors="pt", | |
| truncation=True, | |
| max_length=1024 | |
| ) | |
| # Move inputs to the correct device | |
| if self.device == "cuda": | |
| inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
| # Generate response | |
| with torch.no_grad(): | |
| outputs = self.model.generate( | |
| **inputs, | |
| max_new_tokens=150, | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9, | |
| pad_token_id=self.tokenizer.eos_token_id, | |
| repetition_penalty=1.1 | |
| ) | |
| # Decode response | |
| full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract just the generated part | |
| if "Medical Answer:" in full_response: | |
| generated_response = full_response.split("Medical Answer:")[-1].strip() | |
| else: | |
| generated_response = full_response[len(prompt):].strip() | |
| # Clean up response | |
| cleaned_response = self.clean_medical_response(generated_response) | |
| return cleaned_response | |
| except Exception as e: | |
| print(f"⚠️ BioGPT generation failed: {e}") | |
| return "⚠️ Unable to generate medical response. The medical AI model encountered an error. Please try rephrasing your question or contact support." | |
| def clean_medical_response(self, response: str) -> str: | |
| """Clean and format medical response""" | |
| # Remove incomplete sentences and limit length | |
| sentences = re.split(r'[.!?]+', response) | |
| clean_sentences = [] | |
| for sentence in sentences: | |
| sentence = sentence.strip() | |
| if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')): | |
| clean_sentences.append(sentence) | |
| if len(clean_sentences) >= 3: # Limit to 3 sentences | |
| break | |
| if clean_sentences: | |
| cleaned = '. '.join(clean_sentences) + '.' | |
| else: | |
| cleaned = response[:200] + '...' if len(response) > 200 else response | |
| return cleaned | |
| def fallback_response(self, context: str, query: str) -> str: | |
| """Fallback response when BioGPT fails""" | |
| # Extract key sentences from context | |
| sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20] | |
| if sentences: | |
| response = sentences[0] + '.' | |
| if len(sentences) > 1: | |
| response += ' ' + sentences[1] + '.' | |
| else: | |
| response = context[:300] + '...' | |
| return response | |
| def handle_conversational_interactions(self, query: str) -> Optional[str]: | |
| """Handle comprehensive conversational interactions""" | |
| query_lower = query.lower().strip() | |
| # Use more specific patterns for greetings | |
| greeting_patterns = [ | |
| r'^\s*(hello|hi|hey|hiya|howdy)\s*$', | |
| r'^\s*(good morning|good afternoon|good evening|good day)\s*$', | |
| r'^\s*(what\'s up|whats up|sup|yo)\s*$', | |
| r'^\s*(greetings|salutations)\s*$', | |
| r'^\s*(how are you|how are you doing|how\'s it going|hows it going)\s*$', | |
| r'^\s*(good to meet you|nice to meet you|pleased to meet you)\s*$' | |
| ] | |
| for pattern in greeting_patterns: | |
| if re.match(pattern, query_lower): | |
| responses = [ | |
| "👋 Hello! I'm BioGPT, your professional medical AI assistant specialized in pediatric medicine. I'm here to provide evidence-based medical information. What health concern can I help you with today?", | |
| "🏥 Hi there! I'm a medical AI assistant powered by BioGPT, trained on medical literature. I can help answer questions about children's health and medical conditions. How can I assist you?", | |
| "👋 Greetings! I'm your AI medical consultant, ready to help with pediatric health questions using the latest medical knowledge. What would you like to know about?" | |
| ] | |
| return np.random.choice(responses) | |
| # Handle thanks and other conversational patterns... | |
| # (keeping the rest of the conversational handling as before) | |
| # Return None if no conversational pattern matches | |
| return None | |
| def chat(self, query: str) -> str: | |
| """Main chat function with BioGPT medical-only responses""" | |
| if not query.strip(): | |
| return "Hello! I'm BioGPT, your professional medical AI assistant. How can I help you with pediatric medical questions today?" | |
| # Handle comprehensive conversational interactions first | |
| conversational_response = self.handle_conversational_interactions(query) | |
| if conversational_response: | |
| # Add to conversation history | |
| self.conversation_history.append({ | |
| 'query': query, | |
| 'response': conversational_response, | |
| 'timestamp': datetime.now().isoformat(), | |
| 'type': 'conversational' | |
| }) | |
| return conversational_response | |
| # Check if medical model is available | |
| if not self.model or not self.tokenizer: | |
| return "⚠️ **Medical AI Unavailable**: This chatbot requires BioGPT for accurate medical information. The medical model failed to load. Please contact support or try restarting the application." | |
| if not self.knowledge_chunks: | |
| return "Please load medical data first to access the medical knowledge base." | |
| print(f"🔍 Processing medical query: {query}") | |
| # Retrieve relevant medical context using FAISS or keyword search | |
| start_time = time.time() | |
| context = self.retrieve_medical_context(query) | |
| retrieval_time = time.time() - start_time | |
| if not context: | |
| return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice." | |
| print(f" 📚 Context retrieved ({retrieval_time:.2f}s)") | |
| # Generate response with BioGPT | |
| start_time = time.time() | |
| main_context = '\n\n'.join(context) | |
| response = self.generate_biogpt_response(main_context, query) | |
| generation_time = time.time() - start_time | |
| print(f" 🧠 Response generated ({generation_time:.2f}s)") | |
| # Format final response | |
| final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice." | |
| # Add to conversation history | |
| self.conversation_history.append({ | |
| 'query': query, | |
| 'response': final_response, | |
| 'timestamp': datetime.now().isoformat(), | |
| 'retrieval_time': retrieval_time, | |
| 'generation_time': generation_time, | |
| 'type': 'medical' | |
| }) | |
| return final_response | |
| def get_conversation_summary(self) -> Dict: | |
| """Get conversation statistics""" | |
| if not self.conversation_history: | |
| return {"message": "No conversations yet"} | |
| # Filter medical conversations for performance stats | |
| medical_conversations = [h for h in self.conversation_history if h.get('type') == 'medical'] | |
| if not medical_conversations: | |
| return { | |
| "total_conversations": len(self.conversation_history), | |
| "medical_conversations": 0, | |
| "conversational_interactions": len(self.conversation_history), | |
| "model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model", | |
| "vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search", | |
| "device": self.device | |
| } | |
| avg_retrieval_time = sum(h.get('retrieval_time', 0) for h in medical_conversations) / len(medical_conversations) | |
| avg_generation_time = sum(h.get('generation_time', 0) for h in medical_conversations) / len(medical_conversations) | |
| return { | |
| "total_conversations": len(self.conversation_history), | |
| "medical_conversations": len(medical_conversations), | |
| "conversational_interactions": len(self.conversation_history) - len(medical_conversations), | |
| "avg_retrieval_time": f"{avg_retrieval_time:.2f}s", | |
| "avg_generation_time": f"{avg_generation_time:.2f}s", | |
| "model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model", | |
| "vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search", | |
| "device": self.device, | |
| "quantization": "8-bit" if self.use_8bit else "16-bit/32-bit" | |
| } | |