Update app.py
Browse files
app.py
CHANGED
@@ -17,18 +17,17 @@ logging.basicConfig(
|
|
17 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
18 |
)
|
19 |
|
|
|
20 |
def proc_submission(
|
21 |
input_text: str,
|
22 |
-
|
23 |
-
model_type: str,
|
24 |
num_beams,
|
25 |
token_batch_length,
|
26 |
length_penalty,
|
27 |
-
max_input_length: int =
|
28 |
):
|
29 |
"""
|
30 |
proc_submission - a helper function for the gradio module to process submissions
|
31 |
-
|
32 |
Args:
|
33 |
input_text (str): the input text to summarize
|
34 |
model_size (str): the size of the model to use
|
@@ -38,93 +37,62 @@ def proc_submission(
|
|
38 |
repetition_penalty (float): the repetition penalty to use
|
39 |
no_repeat_ngram_size (int): the no repeat ngram size to use
|
40 |
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
|
41 |
-
|
42 |
Returns:
|
43 |
-
str in HTML format, string of the summary, str of
|
44 |
"""
|
45 |
|
46 |
-
|
47 |
-
"length_penalty": float(length_penalty)
|
48 |
-
"repetition_penalty": 3.5,
|
49 |
-
"no_repeat_ngram_size": 3,
|
50 |
-
"encoder_no_repeat_ngram_size": 4,
|
51 |
-
"num_beams": int(num_beams),
|
52 |
-
"min_length": 11,
|
53 |
-
"max_length": 62,
|
54 |
-
"early_stopping": True,
|
55 |
-
}
|
56 |
-
settings_det = {
|
57 |
-
"length_penalty": float(length_penalty),#2.0 if (model_type == "LED") else 0.8,
|
58 |
"repetition_penalty": 3.5,
|
59 |
"no_repeat_ngram_size": 3,
|
60 |
"encoder_no_repeat_ngram_size": 4,
|
61 |
"num_beams": int(num_beams),
|
62 |
-
"min_length":
|
63 |
-
"max_length":
|
64 |
"early_stopping": True,
|
|
|
65 |
}
|
66 |
st = time.perf_counter()
|
67 |
history = {}
|
68 |
clean_text = clean(input_text, lower=False)
|
69 |
-
|
70 |
processed = truncate_word_count(clean_text, max_input_length)
|
71 |
|
72 |
if processed["was_truncated"]:
|
73 |
tr_in = processed["truncated_text"]
|
74 |
-
msg = f"Input text was truncated to {max_input_length} words to fit within computational constraints"
|
75 |
logging.warning(msg)
|
76 |
history["WARNING"] = msg
|
77 |
else:
|
78 |
tr_in = input_text
|
79 |
msg = None
|
80 |
-
|
81 |
-
#if (summary_type == "TLDR"):
|
82 |
-
#_summaries = summarize_via_tokenbatches(
|
83 |
-
#tr_in,
|
84 |
-
#model_led_tldr if (model_type == "LED") else model_tldr,
|
85 |
-
#tokenizer_led_tldr if (model_type == "LED") else tokenizer_tldr,
|
86 |
-
#batch_length=token_batch_length,
|
87 |
-
#**settings_tldr,
|
88 |
-
#)
|
89 |
-
|
90 |
-
#else:
|
91 |
-
#_summaries = summarize_via_tokenbatches(
|
92 |
-
#tr_in,
|
93 |
-
#model_led_det if (model_type == "LED") else model_det,
|
94 |
-
#tokenizer_led_det if (model_type == "LED") else tokenizer_det,
|
95 |
-
#batch_length=token_batch_length,
|
96 |
-
#**settings_det,
|
97 |
-
#)
|
98 |
-
|
99 |
-
settings = settings_tldr if summary_type == 'tldr' else settings_det
|
100 |
-
|
101 |
_summaries = summarize_via_tokenbatches(
|
102 |
tr_in,
|
103 |
-
|
104 |
-
|
105 |
batch_length=token_batch_length,
|
106 |
**settings,
|
107 |
)
|
108 |
-
|
109 |
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
|
110 |
-
|
111 |
-
f" - Section {i}: {round(s['
|
112 |
for i, s in enumerate(_summaries)
|
113 |
]
|
114 |
|
115 |
sum_text_out = "\n".join(sum_text)
|
116 |
-
history["
|
117 |
-
|
118 |
rt = round((time.perf_counter() - st) / 60, 2)
|
119 |
print(f"Runtime: {rt} minutes")
|
120 |
html = ""
|
121 |
-
html += f"<p>Runtime: {rt} minutes on CPU
|
122 |
if msg is not None:
|
123 |
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
|
124 |
|
125 |
html += ""
|
126 |
|
127 |
-
return html, sum_text_out,
|
128 |
|
129 |
|
130 |
def load_single_example_text(
|
@@ -172,10 +140,8 @@ def load_uploaded_file(file_obj):
|
|
172 |
|
173 |
if __name__ == "__main__":
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
#model_led_det, tokenizer_led_det = #load_model_and_tokenizer("Blaise-g/led_pubmed_sumpubmed_1")
|
178 |
-
#model_led_tldr, tokenizer_led_tldr = load_model_and_tokenizer("Blaise-g/led_large_sumpbumed_scitldr")
|
179 |
|
180 |
name_to_path = load_example_filenames(_here / "examples")
|
181 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
@@ -185,20 +151,17 @@ if __name__ == "__main__":
|
|
185 |
|
186 |
gr.Markdown("# Automatic summarization of biomedical research papers with neural abstractive methods into a long and comprehensive synopsis or extreme TLDR summary version")
|
187 |
gr.Markdown(
|
188 |
-
"A rather simple demo
|
189 |
)
|
190 |
with gr.Column():
|
191 |
|
192 |
-
gr.Markdown("###
|
193 |
gr.Markdown(
|
194 |
-
"Enter text below in the text area. The text will be summarized [using the selected
|
195 |
)
|
196 |
with gr.Row():
|
197 |
-
|
198 |
-
choices=["tldr", "detailed"], label="Summary
|
199 |
-
)
|
200 |
-
model_type = gr.Radio(
|
201 |
-
choices=["LongT5", "LED"], label="Model Architecture", value="LongT5"
|
202 |
)
|
203 |
num_beams = gr.Radio(
|
204 |
choices=[2, 3, 4],
|
@@ -206,7 +169,7 @@ if __name__ == "__main__":
|
|
206 |
value=2,
|
207 |
)
|
208 |
gr.Markdown(
|
209 |
-
"_The
|
210 |
)
|
211 |
with gr.Row():
|
212 |
length_penalty = gr.inputs.Slider(
|
@@ -219,9 +182,8 @@ if __name__ == "__main__":
|
|
219 |
token_batch_length = gr.Radio(
|
220 |
choices=[512, 768, 1024],
|
221 |
label="token batch length",
|
222 |
-
value=
|
223 |
)
|
224 |
-
|
225 |
with gr.Row():
|
226 |
example_name = gr.Dropdown(
|
227 |
list(name_to_path.keys()),
|
@@ -233,7 +195,7 @@ if __name__ == "__main__":
|
|
233 |
input_text = gr.Textbox(
|
234 |
lines=6,
|
235 |
label="Input Text (for summarization)",
|
236 |
-
placeholder="Enter
|
237 |
)
|
238 |
gr.Markdown("Upload your own file:")
|
239 |
with gr.Row():
|
@@ -249,7 +211,7 @@ if __name__ == "__main__":
|
|
249 |
with gr.Column():
|
250 |
gr.Markdown("## Generate Summary")
|
251 |
gr.Markdown(
|
252 |
-
"Summary generation should take approximately
|
253 |
)
|
254 |
summarize_button = gr.Button(
|
255 |
"Summarize!",
|
@@ -259,24 +221,24 @@ if __name__ == "__main__":
|
|
259 |
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
|
260 |
gr.Markdown("### Summary Output")
|
261 |
summary_text = gr.Textbox(
|
262 |
-
label="Summary
|
263 |
)
|
264 |
gr.Markdown(
|
265 |
-
"The
|
266 |
)
|
267 |
-
|
268 |
-
label="
|
269 |
)
|
270 |
|
271 |
gr.Markdown("---")
|
272 |
|
273 |
with gr.Column():
|
274 |
-
gr.Markdown("## About the
|
275 |
gr.Markdown(
|
276 |
"- [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) is a fine-tuned checkpoint of [Stancld/longt5-tglobal-large-16384-pubmed-3k_steps](https://huggingface.co/Stancld/longt5-tglobal-large-16384-pubmed-3k_steps) on the [SumPubMed dataset](https://aclanthology.org/2021.acl-srw.30/). [Blaise-g/longt5_tglobal_large_scitldr](https://huggingface.co/Blaise-g/longt5_tglobal_large_scitldr) is a fine-tuned checkpoint of [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) on the [Scitldr dataset](https://arxiv.org/abs/2004.15011). The goal was to create two models capable of handling the complex information contained in long biomedical documents and subsequently producing scientific summaries according to one of the two possible levels of conciseness: 1) A long explanatory synopsis that retains the majority of domain-specific language used in the original source text. 2)A one sentence long, TLDR style summary."
|
277 |
)
|
278 |
gr.Markdown(
|
279 |
-
"- The two most important parameters
|
280 |
)
|
281 |
gr.Markdown("---")
|
282 |
|
@@ -292,13 +254,12 @@ if __name__ == "__main__":
|
|
292 |
fn=proc_submission,
|
293 |
inputs=[
|
294 |
input_text,
|
295 |
-
|
296 |
-
model_type,
|
297 |
-
length_penalty,
|
298 |
num_beams,
|
299 |
token_batch_length,
|
|
|
300 |
],
|
301 |
-
outputs=[output_text, summary_text,
|
302 |
)
|
303 |
|
304 |
demo.launch(enable_queue=True, share=False)
|
|
|
17 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
18 |
)
|
19 |
|
20 |
+
|
21 |
def proc_submission(
|
22 |
input_text: str,
|
23 |
+
model_size: str,
|
|
|
24 |
num_beams,
|
25 |
token_batch_length,
|
26 |
length_penalty,
|
27 |
+
max_input_length: int = 768,
|
28 |
):
|
29 |
"""
|
30 |
proc_submission - a helper function for the gradio module to process submissions
|
|
|
31 |
Args:
|
32 |
input_text (str): the input text to summarize
|
33 |
model_size (str): the size of the model to use
|
|
|
37 |
repetition_penalty (float): the repetition penalty to use
|
38 |
no_repeat_ngram_size (int): the no repeat ngram size to use
|
39 |
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
|
|
|
40 |
Returns:
|
41 |
+
str in HTML format, string of the summary, str of score
|
42 |
"""
|
43 |
|
44 |
+
settings = {
|
45 |
+
"length_penalty": float(length_penalty),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
"repetition_penalty": 3.5,
|
47 |
"no_repeat_ngram_size": 3,
|
48 |
"encoder_no_repeat_ngram_size": 4,
|
49 |
"num_beams": int(num_beams),
|
50 |
+
"min_length": 4,
|
51 |
+
"max_length": int(token_batch_length // 4),
|
52 |
"early_stopping": True,
|
53 |
+
"do_sample": False,
|
54 |
}
|
55 |
st = time.perf_counter()
|
56 |
history = {}
|
57 |
clean_text = clean(input_text, lower=False)
|
58 |
+
max_input_length = 2048 if model_size == "tldr" else max_input_length
|
59 |
processed = truncate_word_count(clean_text, max_input_length)
|
60 |
|
61 |
if processed["was_truncated"]:
|
62 |
tr_in = processed["truncated_text"]
|
63 |
+
msg = f"Input text was truncated to {max_input_length} words to fit within the computational constraints"
|
64 |
logging.warning(msg)
|
65 |
history["WARNING"] = msg
|
66 |
else:
|
67 |
tr_in = input_text
|
68 |
msg = None
|
69 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
_summaries = summarize_via_tokenbatches(
|
71 |
tr_in,
|
72 |
+
model_sm if model_size == "tldr" else model,
|
73 |
+
tokenizer_sm if model_size == "tldr" else tokenizer,
|
74 |
batch_length=token_batch_length,
|
75 |
**settings,
|
76 |
)
|
|
|
77 |
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
|
78 |
+
sum_scores = [
|
79 |
+
f" - Section {i}: {round(s['summary_score'],4)}"
|
80 |
for i, s in enumerate(_summaries)
|
81 |
]
|
82 |
|
83 |
sum_text_out = "\n".join(sum_text)
|
84 |
+
history["Summary Scores"] = "<br><br>"
|
85 |
+
scores_out = "\n".join(sum_scores)
|
86 |
rt = round((time.perf_counter() - st) / 60, 2)
|
87 |
print(f"Runtime: {rt} minutes")
|
88 |
html = ""
|
89 |
+
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
90 |
if msg is not None:
|
91 |
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
|
92 |
|
93 |
html += ""
|
94 |
|
95 |
+
return html, sum_text_out, scores_out
|
96 |
|
97 |
|
98 |
def load_single_example_text(
|
|
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
|
143 |
+
model, tokenizer = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_sumpubmed")
|
144 |
+
model_sm, tokenizer_sm = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_scitldr")
|
|
|
|
|
145 |
|
146 |
name_to_path = load_example_filenames(_here / "examples")
|
147 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
|
|
151 |
|
152 |
gr.Markdown("# Automatic summarization of biomedical research papers with neural abstractive methods into a long and comprehensive synopsis or extreme TLDR summary version")
|
153 |
gr.Markdown(
|
154 |
+
"A rather simple demo developed for my Master Thesis project using ad-hoc fine-tuned abstractive summarization models to summarize long biomedical articles (or any scientific text related to the biomedical domain) into a detailed, explanatory synopsis or extreme TLDR summary."
|
155 |
)
|
156 |
with gr.Column():
|
157 |
|
158 |
+
gr.Markdown("### Select Summary type and text generation parameters then load input text")
|
159 |
gr.Markdown(
|
160 |
+
"Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file."
|
161 |
)
|
162 |
with gr.Row():
|
163 |
+
model_size = gr.Radio(
|
164 |
+
choices=["tldr", "detailed"], label="Summary type", value="detailed"
|
|
|
|
|
|
|
165 |
)
|
166 |
num_beams = gr.Radio(
|
167 |
choices=[2, 3, 4],
|
|
|
169 |
value=2,
|
170 |
)
|
171 |
gr.Markdown(
|
172 |
+
"_The base model is less performant than the large model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._"
|
173 |
)
|
174 |
with gr.Row():
|
175 |
length_penalty = gr.inputs.Slider(
|
|
|
182 |
token_batch_length = gr.Radio(
|
183 |
choices=[512, 768, 1024],
|
184 |
label="token batch length",
|
185 |
+
value=512,
|
186 |
)
|
|
|
187 |
with gr.Row():
|
188 |
example_name = gr.Dropdown(
|
189 |
list(name_to_path.keys()),
|
|
|
195 |
input_text = gr.Textbox(
|
196 |
lines=6,
|
197 |
label="Input Text (for summarization)",
|
198 |
+
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
199 |
)
|
200 |
gr.Markdown("Upload your own file:")
|
201 |
with gr.Row():
|
|
|
211 |
with gr.Column():
|
212 |
gr.Markdown("## Generate Summary")
|
213 |
gr.Markdown(
|
214 |
+
"Summary generation should take approximately 1-2 minutes for most settings."
|
215 |
)
|
216 |
summarize_button = gr.Button(
|
217 |
"Summarize!",
|
|
|
221 |
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
|
222 |
gr.Markdown("### Summary Output")
|
223 |
summary_text = gr.Textbox(
|
224 |
+
label="Summary", placeholder="The generated summary will appear here"
|
225 |
)
|
226 |
gr.Markdown(
|
227 |
+
"The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
|
228 |
)
|
229 |
+
summary_scores = gr.Textbox(
|
230 |
+
label="Summary Scores", placeholder="Summary scores will appear here"
|
231 |
)
|
232 |
|
233 |
gr.Markdown("---")
|
234 |
|
235 |
with gr.Column():
|
236 |
+
gr.Markdown("## About the Model")
|
237 |
gr.Markdown(
|
238 |
"- [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) is a fine-tuned checkpoint of [Stancld/longt5-tglobal-large-16384-pubmed-3k_steps](https://huggingface.co/Stancld/longt5-tglobal-large-16384-pubmed-3k_steps) on the [SumPubMed dataset](https://aclanthology.org/2021.acl-srw.30/). [Blaise-g/longt5_tglobal_large_scitldr](https://huggingface.co/Blaise-g/longt5_tglobal_large_scitldr) is a fine-tuned checkpoint of [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) on the [Scitldr dataset](https://arxiv.org/abs/2004.15011). The goal was to create two models capable of handling the complex information contained in long biomedical documents and subsequently producing scientific summaries according to one of the two possible levels of conciseness: 1) A long explanatory synopsis that retains the majority of domain-specific language used in the original source text. 2)A one sentence long, TLDR style summary."
|
239 |
)
|
240 |
gr.Markdown(
|
241 |
+
"- The two most important text generation parameters are the `num_beams` and `token_batch_length`. However, increasing them will also increase the amount of execution time needed to generate a summary."
|
242 |
)
|
243 |
gr.Markdown("---")
|
244 |
|
|
|
254 |
fn=proc_submission,
|
255 |
inputs=[
|
256 |
input_text,
|
257 |
+
model_size,
|
|
|
|
|
258 |
num_beams,
|
259 |
token_batch_length,
|
260 |
+
length_penalty,
|
261 |
],
|
262 |
+
outputs=[output_text, summary_text, summary_scores],
|
263 |
)
|
264 |
|
265 |
demo.launch(enable_queue=True, share=False)
|