BlackBeenie commited on
Commit
90f6245
·
1 Parent(s): 59d2e3d

feat: initial commit

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. app.py +132 -0
  3. requirements.txt +30 -0
  4. save_data.py +145 -0
README.md CHANGED
@@ -2,7 +2,7 @@
2
  title: Zerogpu Ocr
3
  emoji: 🐢
4
  colorFrom: blue
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 4.31.3
8
  app_file: app.py
 
2
  title: Zerogpu Ocr
3
  emoji: 🐢
4
  colorFrom: blue
5
+ colorTo: green
6
  sdk: gradio
7
  sdk_version: 4.31.3
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import keras_ocr
4
+ import requests
5
+ import cv2
6
+ import os
7
+ import csv
8
+ import numpy as np
9
+ import pandas as pd
10
+ import huggingface_hub
11
+ from huggingface_hub import Repository
12
+ from datetime import datetime
13
+ import scipy.ndimage.interpolation as inter
14
+ import easyocr
15
+ import datasets
16
+ from datasets import load_dataset, Image
17
+ from PIL import Image
18
+ from paddleocr import PaddleOCR
19
+ from save_data import flag
20
+ import spaces
21
+ import pytesseract
22
+ from PIL import Image
23
+ import torch
24
+
25
+ """
26
+ Paddle OCR
27
+ """
28
+ @spaces.GPU
29
+ def ocr_with_paddle(img):
30
+ finaltext = ''
31
+ ocr = PaddleOCR(use_gpu=True,lang='en',use_angle_cls=True)
32
+ # img_path = 'exp.jpeg'
33
+ result = ocr.ocr(img)
34
+
35
+ for i in range(len(result[0])):
36
+ text = result[0][i][1][0]
37
+ finaltext += ' '+ text
38
+ return finaltext
39
+
40
+
41
+ """
42
+ Keras OCR
43
+ """
44
+ print("\n\n Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
45
+ @spaces.GPU
46
+ def ocr_with_keras(img):
47
+ print("\n\n inside Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
48
+ output_text = ''
49
+ pipeline=keras_ocr.pipeline.Pipeline()
50
+ images=[keras_ocr.tools.read(img)]
51
+ predictions=pipeline.recognize(images)
52
+ first=predictions[0]
53
+ for text,box in first:
54
+ output_text += ' '+ text
55
+ return output_text
56
+
57
+ """
58
+ easy OCR
59
+ """
60
+ # gray scale image
61
+ def get_grayscale(image):
62
+ return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
63
+
64
+ # Thresholding or Binarization
65
+ def thresholding(src):
66
+ return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
67
+
68
+ @spaces.GPU
69
+ def ocr_with_easy(img):
70
+ gray_scale_image=get_grayscale(img)
71
+ thresholding(gray_scale_image)
72
+ cv2.imwrite('image.png',gray_scale_image)
73
+ reader = easyocr.Reader(['th','en'])
74
+ bounds = reader.readtext('image.png',paragraph="False",detail = 0)
75
+ bounds = ''.join(bounds)
76
+ return bounds
77
+
78
+ """
79
+ Generate OCR
80
+ """
81
+ def generate_ocr(Method,img):
82
+
83
+ text_output = ''
84
+ if img.any() or (img).any():
85
+ add_csv = []
86
+ image_id = 1
87
+ print("Method___________________",Method)
88
+ if Method == 'EasyOCR':
89
+ text_output = ocr_with_easy(img)
90
+ if Method == 'KerasOCR':
91
+ text_output = ocr_with_keras(img)
92
+ if Method == 'PaddleOCR':
93
+ text_output = ocr_with_paddle(img)
94
+
95
+ try:
96
+ flag(Method,text_output,img)
97
+ except Exception as e:
98
+ print(e)
99
+ return text_output
100
+ else:
101
+ raise gr.Error("Please upload an image!!!!")
102
+
103
+ # except Exception as e:
104
+ # print("Error in ocr generation ==>",e)
105
+ # text_output = "Something went wrong"
106
+ # return text_output
107
+
108
+
109
+ """
110
+ Create user interface for OCR demo
111
+ """
112
+
113
+ # image = gr.Image(shape=(300, 300))
114
+ image = gr.Image()
115
+ method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR")
116
+ output = gr.Textbox(label="Output")
117
+
118
+ demo = gr.Interface(
119
+ generate_ocr,
120
+ [method,image],
121
+ output,
122
+ title="Optical Character Recognition",
123
+ css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
124
+ article = """<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at
125
+ <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a>
126
+ <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>"""
127
+
128
+
129
+ )
130
+ # demo.launch(enable_queue = False)
131
+ demo.launch()
132
+
requirements.txt ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio==3.50.2
2
+ datasets==2.16.1
3
+ huggingface-hub
4
+ easyocr==1.7.1
5
+ keras-ocr==0.8.6
6
+ openai==1.3.5
7
+ paddleocr==2.7.0.3
8
+ paddle-bfloat==0.1.7
9
+ paddlepaddle==2.5.2
10
+ pandas==2.0.3
11
+ paramiko==3.3.1
12
+ pdf2docx==0.5.6
13
+ Pillow==10.1.0
14
+ requests==2.31.0
15
+ safetensors==0.4.0
16
+ scalene==1.5.31.1
17
+ scikit-image==0.21.0
18
+ scipy==1.10.1
19
+ scikit-learn==1.3.2
20
+ toolz
21
+ torch
22
+ torchvision
23
+ tqdm==4.66.1
24
+ transformers
25
+ paddlepaddle-gpu
26
+ paddleocr
27
+ pytesseract
28
+ pillow
29
+ tensorflow==2.15
30
+
save_data.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import json
4
+ import shutil
5
+ import requests
6
+ import re as r
7
+ from urllib.request import urlopen
8
+ from datetime import datetime
9
+ from datasets import Image
10
+ from PIL import Image
11
+ from huggingface_hub import Repository, upload_file
12
+
13
+ HF_TOKEN = os.environ.get("HF_TOKEN")
14
+ DATASET_NAME = "OCR-image-to-text-ZeroGPU"
15
+ DATASET_REPO_URL = "https://huggingface.co/datasets/pragnakalp/OCR-image-to-text-ZeroGPU"
16
+ DATA_FILENAME = "ocr_data.csv"
17
+ DATA_FILE = os.path.join("ocr_data", DATA_FILENAME)
18
+ DATASET_REPO_ID = "pragnakalp/OCR-image-to-text-ZeroGPU"
19
+ print("is none?", HF_TOKEN is None)
20
+ REPOSITORY_DIR = "data"
21
+ LOCAL_DIR = 'data_local'
22
+ os.makedirs(LOCAL_DIR,exist_ok=True)
23
+
24
+ try:
25
+ hf_hub_download(
26
+ repo_id=DATASET_REPO_ID,
27
+ filename=DATA_FILENAME,
28
+ cache_dir=DATA_DIRNAME,
29
+ force_filename=DATA_FILENAME
30
+ )
31
+
32
+ except:
33
+ print("file not found")
34
+
35
+ try:
36
+ repo = Repository(local_dir="ocr_data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
37
+ repo.git_pull()
38
+ except Exception as e:
39
+ print("Error occurred during git pull:", e)
40
+
41
+ # repo = Repository(local_dir="ocr_data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
42
+ # repo.git_pull()
43
+
44
+ def getIP():
45
+ ip_address = ''
46
+ try:
47
+ d = str(urlopen('http://checkip.dyndns.com/')
48
+ .read())
49
+
50
+ return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
51
+ except Exception as e:
52
+ print("Error while getting IP address -->",e)
53
+ return ip_address
54
+
55
+ def get_location(ip_addr):
56
+ location = {}
57
+ try:
58
+ ip=ip_addr
59
+
60
+ req_data={
61
+ "ip":ip,
62
+ "token":"pkml123"
63
+ }
64
+ url = "https://demos.pragnakalp.com/get-ip-location"
65
+
66
+ # req_data=json.dumps(req_data)
67
+ # print("req_data",req_data)
68
+ headers = {'Content-Type': 'application/json'}
69
+
70
+ response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
71
+ response = response.json()
72
+ print("response======>>",response)
73
+ return response
74
+ except Exception as e:
75
+ print("Error while getting location -->",e)
76
+ return location
77
+
78
+ """
79
+ Save generated details
80
+ """
81
+ def dump_json(thing,file):
82
+ with open(file,'w+',encoding="utf8") as f:
83
+ json.dump(thing,f)
84
+
85
+ def flag(Method,text_output,input_image):
86
+
87
+ print("saving data------------------------")
88
+ # try:
89
+ adversarial_number = 0
90
+ adversarial_number = 0 if None else adversarial_number
91
+
92
+ ip_address= getIP()
93
+ print("ip_address :",ip_address)
94
+ location = get_location(ip_address)
95
+ print("location :",location)
96
+
97
+ metadata_name = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
98
+ SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
99
+ os.makedirs(SAVE_FILE_DIR,exist_ok=True)
100
+ image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png')
101
+ print("image_output_filename :",image_output_filename)
102
+ print(input_image)
103
+ try:
104
+ Image.fromarray(input_image).save(image_output_filename)
105
+ # input_image.save(image_output_filename)
106
+ except Exception:
107
+ raise Exception(f"Had issues saving np array image to file")
108
+
109
+ # Write metadata.json to file
110
+ json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl')
111
+ metadata= {'id':metadata_name,'method':Method,'file_name':'image.png',
112
+ 'generated_text':text_output,'ip':ip_address, 'location':location
113
+ }
114
+
115
+ dump_json(metadata,json_file_path)
116
+
117
+ # Simply upload the image file and metadata using the hub's upload_file
118
+ # Upload the image
119
+ repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
120
+
121
+ _ = upload_file(path_or_fileobj = image_output_filename,
122
+ path_in_repo =repo_image_path,
123
+ repo_id=DATASET_REPO_ID,
124
+ repo_type='dataset',
125
+ token=HF_TOKEN
126
+ )
127
+
128
+ # Upload the metadata
129
+ repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'metadata.jsonl'))
130
+ _ = upload_file(path_or_fileobj = json_file_path,
131
+ path_in_repo =repo_json_path,
132
+ repo_id= DATASET_REPO_ID,
133
+ repo_type='dataset',
134
+ token=HF_TOKEN
135
+ )
136
+ adversarial_number+=1
137
+ repo.git_pull()
138
+
139
+ url = 'http://pragnakalpdev35.pythonanywhere.com/HF_space_image_to_text'
140
+ myobj = {'Method': Method,'text_output':text_output,'img':input_image.tolist(),'ip_address':ip_address, 'loc':location}
141
+ x = requests.post(url, json = myobj)
142
+ print("mail status code",x.status_code)
143
+
144
+ return "*****Logs save successfully!!!!"
145
+