Spaces:
Running
Running
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import uuid | |
import os | |
# Select device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
# Load BiRefNet model | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to(device) | |
# Preprocessing | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def process(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return image | |
# Main function: image upload → preview + downloadable PNG | |
def fn(image): | |
im = load_img(image, output_type="pil").convert("RGB") | |
processed_image = process(im) | |
filename = f"/tmp/processed_{uuid.uuid4().hex}.png" | |
processed_image.save(filename) | |
return processed_image, filename | |
# Gradio interface | |
demo = gr.Interface( | |
fn, | |
inputs=gr.Image(label="Upload an image", sources=["upload"]), | |
outputs=[ | |
gr.Image(label="Processed Preview"), | |
gr.File(label="Download PNG") | |
], | |
title="Background Removal Tool" | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |