Bla1r's picture
Update app.py
4f2a2ab verified
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import uuid
import os
# Select device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
torch.set_float32_matmul_precision(["high", "highest"][0])
# Load BiRefNet model
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
# Preprocessing
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU
def process(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
# Main function: image upload → preview + downloadable PNG
def fn(image):
im = load_img(image, output_type="pil").convert("RGB")
processed_image = process(im)
filename = f"/tmp/processed_{uuid.uuid4().hex}.png"
processed_image.save(filename)
return processed_image, filename
# Gradio interface
demo = gr.Interface(
fn,
inputs=gr.Image(label="Upload an image", sources=["upload"]),
outputs=[
gr.Image(label="Processed Preview"),
gr.File(label="Download PNG")
],
title="Background Removal Tool"
)
if __name__ == "__main__":
demo.launch(show_error=True)