Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
from model import model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
transform1 = transforms.Compose([ | |
transforms.Resize((128, 128)), # Resize the image to 128x128 for the model | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) | |
]) | |
transform2 = transforms.Compose([ | |
transforms.Resize((512, 512)) # Resize the image to 512x512 for display | |
]) | |
def load_image(image): | |
image = Image.fromarray(image).convert('RGB') | |
image = transform1(image) | |
return image.unsqueeze(0).to(device) | |
def infer_image(image, noise_level): | |
image = load_image(image) | |
with torch.no_grad(): | |
mu, logvar = model.encode(image) | |
std = torch.exp(0.5 * logvar) | |
eps = torch.randn_like(std) * noise_level | |
z = mu + eps * std | |
decoded_image = model.decode(z) | |
decoded_image = decoded_image.squeeze().permute(1, 2, 0).cpu().numpy().astype(np.float32) * 0.5 + 0.5 | |
decoded_image = np.clip(decoded_image, 0, 1) | |
decoded_image = Image.fromarray((decoded_image * 255).astype(np.uint8)) | |
decoded_image = transform2(decoded_image) | |
return np.array(decoded_image) | |
examples = [ | |
["example_images/image1.jpg", 0.1], | |
["example_images/image2.png", 0.5], | |
["example_images/image3.jpg", 1.0], | |
] | |
with gr.Blocks() as vae: | |
noise_slider = gr.Slider(0, 10, value=0.01, step=0.01, label="Noise Level") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Upload an image", type="numpy") | |
with gr.Column(): | |
output_image = gr.Image(label="Reconstructed Image") | |
input_image.change(fn=infer_image, inputs=[input_image, noise_slider], outputs=output_image) | |
noise_slider.change(fn=infer_image, inputs=[input_image, noise_slider], outputs=output_image) | |
gr.Examples(examples=examples, inputs=[input_image, noise_slider]) | |