Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,35 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from fastai.vision.all import *
|
3 |
+
import skimage
|
4 |
|
5 |
+
# Load your trained model
|
6 |
+
learn = load_learner('export.pkl')
|
7 |
|
8 |
+
# Define the labels (in this case, just 'cat' and 'dog')
|
9 |
+
labels = ['cat', 'dog']
|
10 |
+
|
11 |
+
# Define the prediction function
|
12 |
+
def predict(img):
|
13 |
+
img = PILImage.create(img)
|
14 |
+
pred, pred_idx, probs = learn.predict(img)
|
15 |
+
# Return a dictionary of probabilities
|
16 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
17 |
+
|
18 |
+
# Update the title, description, and other details for your cat vs. dog classifier
|
19 |
+
title = "Cat vs Dog Classifier"
|
20 |
+
description = "A classifier to distinguish between cats and dogs. Trained with fastai on a relevant dataset."
|
21 |
+
article = "<p style='text-align: center'><a href='https://yourlinkhere.com' target='_blank'>Blog post or additional information</a></p>"
|
22 |
+
examples = ['/path/to/example_image.jpg'] # Update this path to your example images
|
23 |
+
|
24 |
+
# Create and launch the Gradio interface
|
25 |
+
gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs=gr.inputs.Image(shape=(512, 512)),
|
28 |
+
outputs=gr.outputs.Label(num_top_classes=2),
|
29 |
+
title=title,
|
30 |
+
description=description,
|
31 |
+
article=article,
|
32 |
+
examples=examples,
|
33 |
+
interpretation='default',
|
34 |
+
enable_queue=True
|
35 |
+
).launch()
|