|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils import spectral_norm |
|
from modules.generic.conv import Conv1d |
|
|
|
|
|
class ConvEncoder(nn.Module): |
|
def __init__(self, in_channels, z_channels, spk_channels, num_dilation_layer=10): |
|
super(ConvEncoder, self).__init__() |
|
|
|
self.in_channels = in_channels |
|
self.z_channels = z_channels |
|
self.spk_channels = spk_channels |
|
|
|
self.pre_process = Conv1d(in_channels, 512, kernel_size=3) |
|
|
|
self.dilated_conv_layers = nn.ModuleList() |
|
for i in range(num_dilation_layer): |
|
dilation = 2**i |
|
self.dilated_conv_layers.append( |
|
DilatedConvBlock(512, 512, z_channels, spk_channels, dilation) |
|
) |
|
|
|
def forward(self, inputs, z, s): |
|
inputs = inputs.transpose(1, 2) |
|
outputs = self.pre_process(inputs) |
|
print(inputs.shape) |
|
for layer in self.dilated_conv_layers: |
|
outputs = layer(outputs, z, s) |
|
|
|
encoder_outputs = outputs.transpose(1, 2) |
|
return encoder_outputs |
|
|
|
|
|
class DilatedConvBlock(nn.Module): |
|
"""A stack of dilated convolutions interspersed |
|
with batch normalisation and ReLU activations""" |
|
|
|
def __init__(self, in_channels, out_channels, z_channels, s_channels, dilation): |
|
super(DilatedConvBlock, self).__init__() |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.z_channels = z_channels |
|
self.s_channels = s_channels |
|
|
|
self.conv1d = Conv1d( |
|
in_channels, out_channels, kernel_size=3, dilation=dilation |
|
) |
|
self.batch_layer = BatchNorm1dLayer(out_channels, s_channels, z_channels) |
|
|
|
def forward(self, inputs, z, s): |
|
outputs = self.conv1d(inputs) |
|
outputs = self.batch_layer(outputs, z, s) |
|
return F.relu(outputs) |
|
|
|
|
|
class BatchNorm1dLayer(nn.Module): |
|
"""The latents z and speaker embedding s modulate the scale and |
|
shift parameters of the batch normalisation layers""" |
|
|
|
def __init__(self, num_features, s_channels=128, z_channels=128): |
|
super().__init__() |
|
|
|
self.num_features = num_features |
|
self.s_channels = s_channels |
|
self.z_channels = z_channels |
|
self.batch_nrom = nn.BatchNorm1d(num_features, affine=False) |
|
|
|
self.scale_layer = spectral_norm(nn.Linear(z_channels, num_features)) |
|
self.scale_layer.weight.data.normal_(1, 0.02) |
|
self.scale_layer.bias.data.zero_() |
|
|
|
self.shift_layer = spectral_norm(nn.Linear(s_channels, num_features)) |
|
self.shift_layer.weight.data.normal_(1, 0.02) |
|
self.shift_layer.bias.data.zero_() |
|
|
|
def forward(self, inputs, z, s): |
|
outputs = self.batch_nrom(inputs) |
|
scale = self.scale_layer(z) |
|
scale = scale.view(-1, self.num_features, 1) |
|
|
|
shift = self.shift_layer(s) |
|
shift = shift.view(-1, self.num_features, 1) |
|
|
|
outputs = scale * outputs + shift |
|
|
|
return outputs |
|
|
|
|
|
if __name__ == "__main__": |
|
model = ConvEncoder(256, 64, 64) |
|
encoder_inputs = torch.randn(2, 256, 10) |
|
z = torch.randn(2, 64) |
|
speaker = torch.randn(1, 64) |
|
outputs, duration = model(encoder_inputs, z, speaker) |
|
print(outputs.shape, duration.shape) |
|
|