Spaces:
Runtime error
Runtime error
import pinecone | |
from pprint import pprint | |
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModel, AutoModelForSeq2SeqLM | |
model_name = "vblagoje/bart_lfqa" | |
# connect to pinecone environment | |
pinecone.init( | |
api_key="e5d4972e-0045-43d5-a55e-efdeafe442dd", | |
environment="us-central1-gcp" # find next to API key in console | |
) | |
index_name = "abstractive-question-answering" | |
# check if the abstractive-question-answering index exists | |
if index_name not in pinecone.list_indexes(): | |
# create the index if it does not exist | |
pinecone.create_index( | |
index_name, | |
dimension=768, | |
metric="cosine" | |
) | |
# connect to abstractive-question-answering index we created | |
index = pinecone.Index(index_name) | |
from transformers import BartTokenizer, BartForConditionalGeneration | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
model = model.to('cpu') | |
import torch | |
from sentence_transformers import SentenceTransformer | |
# set device to GPU if available | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# load the retriever model from huggingface model hub | |
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base", device=device) | |
def query_pinecone(query, top_k): | |
# generate embeddings for the query | |
xq = retriever.encode([query]).tolist() | |
# search pinecone index for context passage with the answer | |
xc = index.query(xq, top_k=top_k, include_metadata=True) | |
return xc | |
def format_query(query, context): | |
# extract passage_text from Pinecone search result and add the <P> tag | |
context = [f"<P> {m['metadata']['text']}" for m in context] | |
# concatinate all context passages | |
context = " ".join(context) | |
# contcatinate the query and context passages | |
query = f"question: {query} context: {context}" | |
return query | |
def generate_answer(query): | |
query_and_docs = query | |
model_input = tokenizer(query_and_docs, truncation=True, padding=True, return_tensors="pt") | |
generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device), | |
attention_mask=model_input["attention_mask"].to(device), | |
min_length=64, | |
max_length=256, | |
do_sample=False, | |
early_stopping=True, | |
num_beams=8, | |
temperature=1.0, | |
top_k=None, | |
top_p=None, | |
eos_token_id=tokenizer.eos_token_id, | |
no_repeat_ngram_size=3, | |
num_return_sequences=1) | |
res = tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
st.write(str(res)) | |
query = st.text_area('Enter Question:') | |
b = st.button('Submit!') | |
if b: | |
st.write("Processing, please wait!") | |
context = query_pinecone(query, top_k=5) | |
query = format_query(query, context["matches"]) | |
generate_answer(query) |