BilalHasan's picture
Update app.py
1f98aa3 verified
raw
history blame
615 Bytes
import gradio as gr
import numpy as np
from transformers import pipeline
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base")
def predict(audio):
sr, y = audio
y = y.astype(np.float32)
if y.ndim > 1:
y = y.mean(axis=1)
y /= np.max(np.abs(y))
text = transcriber({"sampling_rate": sr, "raw": y})['text']
return text
gradio_app = gr.Interface(
fn=predict,
inputs=[gr.Audio(sources=["upload", "microphone"], type="numpy")],
outputs=[gr.Textbox(label="Transcription")],
title = "Speech transcription"
)
if __name__ == "__main__":
gradio_app.launch()