Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torchvision | |
from torchvision import models | |
from torch import nn | |
import torch | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
#class names | |
with open('class_names.txt', "r") as f: | |
class_names = [car.strip() for car in f.readlines()] | |
#model and transforms preparation | |
effnetb0_weights = models.EfficientNet_B0_Weights.DEFAULT | |
effnetb0 = torchvision.models.efficientnet_b0(weights = effnetb0_weights) | |
effnetb0_transforms = effnetb0_weights.transforms() | |
#freeze params | |
for param in effnetb0.parameters(): | |
param.requires_grad = False | |
#change classifier | |
effnetb0.classifier = nn.Sequential( | |
nn.Dropout(p=.2), | |
nn.Linear(in_features = 1280, | |
out_features = 196) | |
) | |
#load saved weights | |
effnetb0.load_state_dict(torch.load('pretrained_effnetb0_stanford_cars_20_percent.pth', | |
map_location=torch.device("cpu")) | |
#predict function | |
def predict(img) -> Tuple[Dict, float]: | |
start_time = timer() | |
#put model into eval mode | |
effnetb0.eval() | |
with torch.inference_mode(): | |
pred_logits = effnetb0(img.unsqueeze(0)) | |
pred_probs = torch.softmax(pred_logits, dim = 1) | |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
end_time = timer() | |
time = round(end_time - start_time, 5) | |
return pred_labels_and_probs, time | |
#gradio app | |
title = 'effnetb0' | |
description = 'Pretrained effnetb0 model on stanford cars dataset' | |
#create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)"), | |
], | |
examples=example_list, | |
title=title, | |
description=description | |
) | |
# Launch the app! | |
demo.launch() | |