Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import copy | |
from typing import Optional, List | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
class Transformer_Caption(nn.Module): | |
def __init__(self, config,d_model=512, nhead=4, num_encoder_layers=1, | |
num_decoder_layers=2, dim_feedforward=1024, dropout=0.1, | |
activation="gelu", normalize_before=False, | |
return_intermediate_dec=False): | |
super().__init__() | |
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, | |
dropout, activation, normalize_before) | |
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
self.encoder = TransformerEncoder( | |
encoder_layer, num_encoder_layers, encoder_norm) | |
self.embeddings = DecoderEmbeddings(config) | |
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, | |
dropout, activation, normalize_before) | |
decoder_norm = nn.LayerNorm(d_model) | |
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, | |
return_intermediate=return_intermediate_dec) | |
print("Num decoders:") | |
print(num_decoder_layers) | |
self._reset_parameters() | |
self.d_model = d_model | |
self.nhead = nhead | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, src, tgt, tgt_mask): | |
# flatten NxCxHxW to HWxNxC | |
#print("HERRRRRR") | |
#print(src.shape) | |
h, bs, w = src.shape | |
#src = src.permute(1, 0, 2) | |
#print("SRCCCCCCCC") | |
#print(src.shape) | |
#pos_embed = pos_embed.flatten(2).permute(2, 0, 1) | |
#mask = mask.flatten(1) | |
#print(num_decoder_layers) | |
tgt = self.embeddings(tgt).permute(1, 0, 2) | |
query_embed = self.embeddings.position_embeddings.weight.unsqueeze(1) | |
query_embed = query_embed.repeat(1, bs, 1) | |
#print("firstmyyyyyyyyyyyyyy") | |
#print(tgt.shape) | |
#print(tgt_mask.shape) | |
#print(pos_embed.shape) | |
#print(query_embed.shape) | |
#print(generate_square_subsequent_mask(len(tgt)).to(tgt.device).shape) | |
#print(src.shape) | |
#memory = self.encoder(src, src_key_padding_mask=None, pos=None) | |
#memory = self.encoder(src) | |
#print("then....") | |
#print(tgt_mask.shape) | |
hs = self.decoder(tgt, src, memory_key_padding_mask=None, tgt_key_padding_mask=tgt_mask, | |
pos=None, query_pos=query_embed, | |
tgt_mask=generate_square_subsequent_mask(len(tgt)).to(tgt.device)) | |
#hs = self.decoder(tgt, memory, tgt_key_padding_mask=tgt_mask,query_pos=query_embed,tgt_mask=generate_square_subsequent_mask(len(tgt)).to(tgt.device)) | |
return hs | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
output = src | |
for layer in self.layers: | |
output = layer(output, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerDecoder(nn.Module): | |
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): | |
super().__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
self.return_intermediate = return_intermediate | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
output = tgt | |
intermediate = [] | |
for layer in self.layers: | |
output = layer(output, memory, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, query_pos=query_pos) | |
if self.return_intermediate: | |
intermediate.append(self.norm(output)) | |
if self.norm is not None: | |
output = self.norm(output) | |
if self.return_intermediate: | |
intermediate.pop() | |
intermediate.append(output) | |
if self.return_intermediate: | |
return torch.stack(intermediate) | |
return output | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
def forward_pre(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
src2 = self.norm1(src) | |
q = k = self.with_pos_embed(src2, pos) | |
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src2 = self.norm2(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) | |
src = src + self.dropout2(src2) | |
return src | |
def forward(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
class TransformerDecoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.multihead_attn = nn.MultiheadAttention( | |
d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
#print(tgt.shape) | |
#print(query_pos.shape) | |
q = k = self.with_pos_embed(tgt, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def forward_pre(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) | |
return self.forward_post(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) | |
class DecoderEmbeddings(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding( | |
config.vocab_size, config.hidden_dim, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_dim | |
) | |
self.LayerNorm = torch.nn.LayerNorm( | |
config.hidden_dim, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, x): | |
input_shape = x.size() | |
x=x.long() | |
#print(x.shape) | |
seq_length = input_shape[1] | |
device = x.device | |
position_ids = torch.arange( | |
seq_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
input_embeds = self.word_embeddings(x) | |
position_embeds = self.position_embeddings(position_ids) | |
embeddings = input_embeds + position_embeds | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
#print(embeddings) | |
return embeddings | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |
def generate_square_subsequent_mask(sz): | |
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). | |
Unmasked positions are filled with float(0.0). | |
""" | |
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) | |
mask = mask.float().masked_fill(mask == 0, float( | |
'-inf')).masked_fill(mask == 1, float(0.0)) | |
return mask | |
def build_transformer(config): | |
return Transformer_Caption( | |
config, | |
d_model=config.hidden_dim, | |
dropout=config.dropout, | |
nhead=config.nheads, | |
dim_feedforward=config.dim_feedforward, | |
num_encoder_layers=config.enc_layers, | |
num_decoder_layers=config.dec_layers, | |
normalize_before=config.pre_norm, | |
return_intermediate_dec=False, | |
) | |