Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,26 +1,70 @@
|
|
1 |
import tempfile
|
2 |
-
import
|
3 |
-
|
|
|
|
|
4 |
from flask_cors import CORS
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
CORS(app)
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
-
# Directory to save uploaded files
|
14 |
UPLOAD_FOLDER = tempfile.mkdtemp()
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@app.route('/')
|
18 |
def index():
|
19 |
-
return {'hello': 'This is a wearon API
|
20 |
|
21 |
@app.route('/process', methods=['POST'])
|
22 |
-
def
|
23 |
try:
|
|
|
|
|
|
|
24 |
# Handle the uploaded model image
|
25 |
if 'model_image' not in request.files:
|
26 |
return jsonify(error='No model image file provided'), 400
|
@@ -33,24 +77,40 @@ def process():
|
|
33 |
filename = os.path.join(app.config['UPLOAD_FOLDER'], model_image.filename)
|
34 |
model_image.save(filename)
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
|
46 |
-
#
|
47 |
-
with open(
|
48 |
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
49 |
|
|
|
50 |
return jsonify(image=encoded_image), 200
|
51 |
|
52 |
except Exception as e:
|
|
|
53 |
return jsonify(error=str(e)), 500
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
1 |
import tempfile
|
2 |
+
import threading
|
3 |
+
import time
|
4 |
+
import signal
|
5 |
+
from flask import Flask, request, jsonify, send_from_directory
|
6 |
from flask_cors import CORS
|
7 |
+
import os
|
8 |
+
import traceback
|
9 |
+
import shutil
|
10 |
+
import base64
|
11 |
+
from gradio_client import Client, file
|
12 |
+
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
CORS(app)
|
16 |
|
17 |
+
# Define Gradio client instance
|
18 |
+
client = Client("yisol/IDM-VTON")
|
19 |
|
20 |
+
# Directory to save uploaded and processed files
|
21 |
UPLOAD_FOLDER = tempfile.mkdtemp()
|
22 |
+
RESULT_FOLDER = tempfile.mkdtemp()
|
23 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
24 |
+
os.makedirs(UPLOAD_FOLDER)
|
25 |
+
if not os.path.exists(RESULT_FOLDER):
|
26 |
+
os.makedirs(RESULT_FOLDER)
|
27 |
+
|
28 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
29 |
+
app.config['RESULT_FOLDER'] = RESULT_FOLDER
|
30 |
+
|
31 |
+
def predict_with_timeout(model_image_path, product_image_url, timeout=600):
|
32 |
+
result = [None] # Mutable object to store the result
|
33 |
+
|
34 |
+
def target():
|
35 |
+
try:
|
36 |
+
result[0] = client.predict(
|
37 |
+
dict({"background": file(model_image_path), "layers": [], "composite": None}),
|
38 |
+
garm_img=file(product_image_url),
|
39 |
+
garment_des="Hello!!",
|
40 |
+
is_checked=True,
|
41 |
+
is_checked_crop=False,
|
42 |
+
denoise_steps=30,
|
43 |
+
seed=42,
|
44 |
+
api_name="/tryon"
|
45 |
+
)
|
46 |
+
except Exception as e:
|
47 |
+
result[0] = str(e)
|
48 |
+
|
49 |
+
thread = threading.Thread(target=target)
|
50 |
+
thread.start()
|
51 |
+
thread.join(timeout)
|
52 |
+
if thread.is_alive():
|
53 |
+
return None # Timeout
|
54 |
+
if isinstance(result[0], Exception):
|
55 |
+
return str(result[0]) # Return the error message
|
56 |
+
return result[0]
|
57 |
|
58 |
@app.route('/')
|
59 |
def index():
|
60 |
+
return {'hello': 'This is a wearon API'}
|
61 |
|
62 |
@app.route('/process', methods=['POST'])
|
63 |
+
def predict():
|
64 |
try:
|
65 |
+
# Get the product image URL from the request
|
66 |
+
product_image_url = request.form.get('product_image_url')
|
67 |
+
|
68 |
# Handle the uploaded model image
|
69 |
if 'model_image' not in request.files:
|
70 |
return jsonify(error='No model image file provided'), 400
|
|
|
77 |
filename = os.path.join(app.config['UPLOAD_FOLDER'], model_image.filename)
|
78 |
model_image.save(filename)
|
79 |
|
80 |
+
base_path = os.getcwd()
|
81 |
+
full_filename = os.path.normpath(os.path.join(base_path, filename))
|
82 |
+
|
83 |
+
print("Product image = ", product_image_url)
|
84 |
+
print("Model image = ", full_filename)
|
85 |
+
|
86 |
+
# Perform prediction with a timeout
|
87 |
+
result = predict_with_timeout(full_filename, product_image_url)
|
88 |
+
if result is None:
|
89 |
+
return jsonify(error='Prediction timed out after 10 minutes'), 500
|
90 |
+
|
91 |
+
print(result)
|
92 |
+
# Extract the path of the first output image
|
93 |
+
output_image_path = result[0]
|
94 |
|
95 |
+
# Copy the output image to the RESULT_FOLDER
|
96 |
+
output_image_filename = os.path.basename(output_image_path)
|
97 |
+
local_output_path = os.path.join(app.config['RESULT_FOLDER'], output_image_filename)
|
98 |
+
shutil.copy(output_image_path, local_output_path)
|
99 |
|
100 |
+
# Remove the uploaded file after processing
|
101 |
+
os.remove(filename)
|
102 |
|
103 |
+
# Encode the output image in base64
|
104 |
+
with open(local_output_path, "rb") as image_file:
|
105 |
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
106 |
|
107 |
+
# Return the output image in JSON format
|
108 |
return jsonify(image=encoded_image), 200
|
109 |
|
110 |
except Exception as e:
|
111 |
+
traceback.print_exc()
|
112 |
return jsonify(error=str(e)), 500
|
113 |
|
114 |
+
@app.route('/uploads/<filename>')
|
115 |
+
def uploaded_file(filename):
|
116 |
+
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
|