Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,128 +1,98 @@
|
|
1 |
-
from flask import Flask
|
|
|
|
|
|
|
|
|
2 |
import shutil
|
3 |
import base64
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
|
|
|
|
7 |
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
app = Flask(__name__)
|
12 |
-
CORS(app)
|
13 |
# Directory to save uploaded and processed files
|
14 |
-
UPLOAD_FOLDER =
|
15 |
-
RESULT_FOLDER =
|
|
|
|
|
|
|
|
|
16 |
|
17 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
18 |
app.config['RESULT_FOLDER'] = RESULT_FOLDER
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
def predict_with_timeout(model_image_path, product_image_url, timeout=600):
|
24 |
-
result = [None] # Mutable object to store the result
|
25 |
-
|
26 |
-
def target():
|
27 |
-
try:
|
28 |
-
|
29 |
-
result[0] = client.predict(
|
30 |
-
dict({"background": file(model_image_path), "layers": [], "composite": None}),
|
31 |
-
garm_img=file(product_image_url),
|
32 |
-
seed=42,
|
33 |
-
api_name="/tryon"
|
34 |
-
)
|
35 |
-
|
36 |
-
except Exception as e:
|
37 |
-
|
38 |
-
result[0] = str(e)
|
39 |
-
|
40 |
-
thread = threading.Thread(target=target)
|
41 |
-
thread.start()
|
42 |
-
thread.join(timeout)
|
43 |
-
|
44 |
-
if thread.is_alive():
|
45 |
-
return "Prediction timed out after {} seconds".format(timeout)
|
46 |
-
|
47 |
-
if isinstance(result[0], Exception):
|
48 |
-
return str(result[0]) # Return the error message
|
49 |
-
return result[0]
|
50 |
-
|
51 |
-
@app.route('/')
|
52 |
-
def index():
|
53 |
-
|
54 |
-
return {'message': 'This is a wearon API'}
|
55 |
-
|
56 |
@app.route('/process', methods=['POST'])
|
57 |
-
def predict():
|
58 |
-
|
59 |
try:
|
60 |
# Get the product image URL from the request
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
return jsonify(error='No product image URL provided'), 400
|
65 |
|
66 |
# Handle the uploaded model image
|
67 |
if 'model_image' not in request.files:
|
68 |
-
|
69 |
return jsonify(error='No model image file provided'), 400
|
70 |
|
71 |
-
model_image = request.files['model_image']
|
72 |
if model_image.filename == '':
|
73 |
-
|
74 |
return jsonify(error='No selected file'), 400
|
75 |
|
76 |
# Save the uploaded file to the upload directory
|
77 |
filename = os.path.join(app.config['UPLOAD_FOLDER'], model_image.filename)
|
78 |
-
model_image.save(filename)
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
print("Product image
|
83 |
-
print("Model image
|
84 |
|
85 |
-
# Perform prediction
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
|
|
94 |
output_image_path = result[0]
|
95 |
-
if not os.path.exists(output_image_path):
|
96 |
-
return jsonify(error='Output image file not found: {}'.format(output_image_path)), 500
|
97 |
-
|
98 |
|
99 |
# Copy the output image to the RESULT_FOLDER
|
100 |
output_image_filename = os.path.basename(output_image_path)
|
101 |
local_output_path = os.path.join(app.config['RESULT_FOLDER'], output_image_filename)
|
102 |
-
shutil.copy
|
103 |
-
|
104 |
|
105 |
# Remove the uploaded file after processing
|
106 |
-
os.remove(
|
107 |
-
|
108 |
|
109 |
# Encode the output image in base64
|
110 |
-
with open(local_output_path, "rb") as image_file:
|
111 |
-
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
112 |
|
113 |
# Return the output image in JSON format
|
114 |
-
|
115 |
return jsonify(image=encoded_image), 200
|
116 |
|
117 |
except Exception as e:
|
118 |
-
|
119 |
traceback.print_exc()
|
120 |
return jsonify(error=str(e)), 500
|
121 |
|
122 |
@app.route('/uploads/<filename>')
|
123 |
-
def uploaded_file(filename):
|
124 |
-
|
125 |
-
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
|
126 |
|
127 |
if __name__ == '__main__':
|
128 |
-
app.run(host='0.0.0.0', port=
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_from_directory
|
2 |
+
from gradio_client import Client, file
|
3 |
+
from flask_cors import CORS
|
4 |
+
import os
|
5 |
+
import traceback
|
6 |
import shutil
|
7 |
import base64
|
8 |
+
import asyncio
|
9 |
+
from quart import Quart, request, jsonify, send_from_directory
|
10 |
+
from quart_cors import cors
|
11 |
+
import aiofiles
|
12 |
|
13 |
+
app = Quart(__name__)
|
14 |
+
cors(app)
|
15 |
|
16 |
+
client = Client("kadirnar/IDM-VTON")
|
17 |
|
|
|
|
|
|
|
|
|
18 |
# Directory to save uploaded and processed files
|
19 |
+
UPLOAD_FOLDER = 'static/uploads'
|
20 |
+
RESULT_FOLDER = 'static/results'
|
21 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
22 |
+
os.makedirs(UPLOAD_FOLDER)
|
23 |
+
if not os.path.exists(RESULT_FOLDER):
|
24 |
+
os.makedirs(RESULT_FOLDER)
|
25 |
|
26 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
27 |
app.config['RESULT_FOLDER'] = RESULT_FOLDER
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@app.route('/process', methods=['POST'])
|
30 |
+
async def predict():
|
|
|
31 |
try:
|
32 |
# Get the product image URL from the request
|
33 |
+
form = await request.form
|
34 |
+
product_image_url = form.get('product_image_url')
|
|
|
|
|
35 |
|
36 |
# Handle the uploaded model image
|
37 |
if 'model_image' not in request.files:
|
|
|
38 |
return jsonify(error='No model image file provided'), 400
|
39 |
|
40 |
+
model_image = await request.files['model_image']
|
41 |
if model_image.filename == '':
|
|
|
42 |
return jsonify(error='No selected file'), 400
|
43 |
|
44 |
# Save the uploaded file to the upload directory
|
45 |
filename = os.path.join(app.config['UPLOAD_FOLDER'], model_image.filename)
|
46 |
+
await model_image.save(filename)
|
47 |
|
48 |
+
base_path = os.getcwd()
|
49 |
+
full_filename = os.path.normpath(os.path.join(base_path, filename))
|
50 |
|
51 |
+
print("Product image = ", product_image_url)
|
52 |
+
print("Model image = ", full_filename)
|
53 |
|
54 |
+
# Perform prediction
|
55 |
+
try:
|
56 |
+
result = await asyncio.to_thread(client.predict,
|
57 |
+
dict={"background": file(full_filename), "layers": [], "composite": None},
|
58 |
+
garm_img=file(product_image_url),
|
59 |
+
garment_des="Hello!!",
|
60 |
+
is_checked=True,
|
61 |
+
is_checked_crop=False,
|
62 |
+
denoise_steps=30,
|
63 |
+
seed=42,
|
64 |
+
api_name="/tryon"
|
65 |
+
)
|
66 |
+
except Exception as e:
|
67 |
+
traceback.print_exc()
|
68 |
+
raise
|
69 |
|
70 |
+
print(result)
|
71 |
+
# Extract the path of the first output image
|
72 |
output_image_path = result[0]
|
|
|
|
|
|
|
73 |
|
74 |
# Copy the output image to the RESULT_FOLDER
|
75 |
output_image_filename = os.path.basename(output_image_path)
|
76 |
local_output_path = os.path.join(app.config['RESULT_FOLDER'], output_image_filename)
|
77 |
+
await asyncio.to_thread(shutil.copy, output_image_path, local_output_path)
|
|
|
78 |
|
79 |
# Remove the uploaded file after processing
|
80 |
+
os.remove(filename)
|
|
|
81 |
|
82 |
# Encode the output image in base64
|
83 |
+
async with aiofiles.open(local_output_path, "rb") as image_file:
|
84 |
+
encoded_image = base64.b64encode(await image_file.read()).decode('utf-8')
|
85 |
|
86 |
# Return the output image in JSON format
|
|
|
87 |
return jsonify(image=encoded_image), 200
|
88 |
|
89 |
except Exception as e:
|
|
|
90 |
traceback.print_exc()
|
91 |
return jsonify(error=str(e)), 500
|
92 |
|
93 |
@app.route('/uploads/<filename>')
|
94 |
+
async def uploaded_file(filename):
|
95 |
+
return await send_from_directory(app.config['UPLOAD_FOLDER'], filename)
|
|
|
96 |
|
97 |
if __name__ == '__main__':
|
98 |
+
app.run(host='0.0.0.0', port=5000)
|