wearon / main.py
Bhushan26's picture
Update main.py
cf1378b verified
raw
history blame
3.18 kB
from fastapi import FastAPI, UploadFile, Form, File, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from gradio_client import Client, file
import os
import shutil
import base64
import traceback
app = FastAPI()
# Allow CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# client = Client("yisol/IDM-VTON")
client = Client("kadirnar/IDM-VTON")
# Directory to save uploaded and processed files
UPLOAD_FOLDER = 'static/uploads'
RESULT_FOLDER = 'static/results'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
@app.post("/")
async def hello():
return {"Wearon":"wearon model is running"}
@app.post("/process")
async def predict(product_image_url: str = Form(...), model_image: UploadFile = File(...)):
try:
if not model_image:
raise HTTPException(status_code=400, detail="No model image file provided")
# Save the uploaded file to the upload directory
filename = os.path.join(UPLOAD_FOLDER, model_image.filename)
with open(filename, "wb") as buffer:
shutil.copyfileobj(model_image.file, buffer)
base_path = os.getcwd()
full_filename = os.path.normpath(os.path.join(base_path, filename))
print("Product image = ", product_image_url)
print("Model image = ", full_filename)
# Perform prediction
try:
result = await client.predict(
dict={"background": file(full_filename), "layers": [], "composite": None},
garm_img=file(product_image_url),
garment_des="Hello!!",
is_checked=True,
is_checked_crop=False,
denoise_steps=30,
seed=42,
api_name="/tryon"
)
except Exception as e:
traceback.print_exc()
raise
print(result)
# Extract the path of the first output image
output_image_path = result[0]
# Copy the output image to the RESULT_FOLDER
output_image_filename = os.path.basename(output_image_path)
local_output_path = os.path.join(RESULT_FOLDER, output_image_filename)
shutil.copy(output_image_path, local_output_path)
# Remove the uploaded file after processing
os.remove(filename)
# Encode the output image in base64
with open(local_output_path, "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
# Return the output image in JSON format
return JSONResponse(content={"image": encoded_image}, status_code=200)
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
@app.get("/uploads/{filename}")
async def uploaded_file(filename: str):
file_path = os.path.join(UPLOAD_FOLDER, filename)
if os.path.exists(file_path):
return FileResponse(file_path)
else:
raise HTTPException(status_code=404, detail="File not found")