Spaces:
Sleeping
Sleeping
resolved device reference
Browse files
yolov5.py
CHANGED
@@ -101,7 +101,6 @@ import requests
|
|
101 |
import yaml
|
102 |
import matplotlib.patches as patches
|
103 |
|
104 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
105 |
def dff_l(activations, model, n_components):
|
106 |
batch_size, channels, h, w = activations.shape
|
107 |
print('activation', activations.shape)
|
@@ -175,6 +174,7 @@ class DeepFeatureFactorization:
|
|
175 |
|
176 |
|
177 |
def dff_nmf(image, target_lyr, n_components):
|
|
|
178 |
mean = [0.485, 0.456, 0.406] # Mean for RGB channels
|
179 |
std = [0.229, 0.224, 0.225] # Standard deviation for RGB channels
|
180 |
img = cv2.resize(image, (640, 640))
|
|
|
101 |
import yaml
|
102 |
import matplotlib.patches as patches
|
103 |
|
|
|
104 |
def dff_l(activations, model, n_components):
|
105 |
batch_size, channels, h, w = activations.shape
|
106 |
print('activation', activations.shape)
|
|
|
174 |
|
175 |
|
176 |
def dff_nmf(image, target_lyr, n_components):
|
177 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
178 |
mean = [0.485, 0.456, 0.406] # Mean for RGB channels
|
179 |
std = [0.229, 0.224, 0.225] # Standard deviation for RGB channels
|
180 |
img = cv2.resize(image, (640, 640))
|