Spaces:
Sleeping
Sleeping
Commit
·
4b26edc
1
Parent(s):
0318d64
Add: DFF support
Browse files
yolov5.py
DELETED
@@ -1,195 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
import torchvision.transforms as transforms
|
6 |
-
from pytorch_grad_cam import EigenCAM
|
7 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
8 |
-
import gradio as gr
|
9 |
-
"""
|
10 |
-
# Global Color Palette
|
11 |
-
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
12 |
-
|
13 |
-
|
14 |
-
def parse_detections(results):
|
15 |
-
detections = results.pandas().xyxy[0].to_dict()
|
16 |
-
boxes, colors, names, classes = [], [], [], []
|
17 |
-
for i in range(len(detections["xmin"])):
|
18 |
-
confidence = detections["confidence"][i]
|
19 |
-
if confidence < 0.2:
|
20 |
-
continue
|
21 |
-
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
|
22 |
-
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
|
23 |
-
name, category = detections["name"][i], int(detections["class"][i])
|
24 |
-
boxes.append((xmin, ymin, xmax, ymax))
|
25 |
-
colors.append(COLORS[category])
|
26 |
-
names.append(name)
|
27 |
-
classes.append(category)
|
28 |
-
return boxes, colors, names, classes
|
29 |
-
|
30 |
-
|
31 |
-
def draw_detections(boxes, colors, names, classes, img):
|
32 |
-
for box, color, name, cls in zip(boxes, colors, names, classes):
|
33 |
-
xmin, ymin, xmax, ymax = box
|
34 |
-
label = f"{cls}: {name}" # Combine class ID and name
|
35 |
-
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
|
36 |
-
cv2.putText(
|
37 |
-
img, label, (xmin, ymin - 5),
|
38 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
|
39 |
-
lineType=cv2.LINE_AA
|
40 |
-
)
|
41 |
-
return img
|
42 |
-
|
43 |
-
|
44 |
-
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
45 |
-
cam = EigenCAM(model, target_layers)
|
46 |
-
grayscale_cam = cam(tensor)[0, :, :]
|
47 |
-
img_float = np.float32(rgb_img) / 255
|
48 |
-
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
49 |
-
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
50 |
-
for x1, y1, x2, y2 in boxes:
|
51 |
-
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
52 |
-
renormalized_cam = scale_cam_image(renormalized_cam)
|
53 |
-
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
54 |
-
|
55 |
-
return cam_image, renormalized_cam_image
|
56 |
-
|
57 |
-
|
58 |
-
def xai_yolov5(image):
|
59 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
60 |
-
model.eval()
|
61 |
-
model.cpu()
|
62 |
-
|
63 |
-
target_layers = [model.model.model.model[-2]] # Grad-CAM target layer
|
64 |
-
|
65 |
-
# Run YOLO detection
|
66 |
-
results = model([image])
|
67 |
-
boxes, colors, names, classes = parse_detections(results)
|
68 |
-
detections_img = draw_detections(boxes, colors, names,classes, image.copy())
|
69 |
-
|
70 |
-
# Prepare input tensor for Grad-CAM
|
71 |
-
img_float = np.float32(image) / 255
|
72 |
-
transform = transforms.ToTensor()
|
73 |
-
tensor = transform(img_float).unsqueeze(0)
|
74 |
-
|
75 |
-
# Grad-CAM visualization
|
76 |
-
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
|
77 |
-
|
78 |
-
# Combine results
|
79 |
-
final_image = np.hstack((image, detections_img, renormalized_cam_image))
|
80 |
-
caption = "Results using YOLOv5"
|
81 |
-
return Image.fromarray(final_image), caption
|
82 |
-
|
83 |
-
|
84 |
-
"""
|
85 |
-
|
86 |
-
import torch
|
87 |
-
import cv2
|
88 |
-
import numpy as np
|
89 |
-
from PIL import Image
|
90 |
-
import torchvision.transforms as transforms
|
91 |
-
from pytorch_grad_cam import EigenCAM
|
92 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
93 |
-
import gradio as gr
|
94 |
-
from sklearn.decomposition import NMF # For feature factorization
|
95 |
-
|
96 |
-
# Global Color Palette
|
97 |
-
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
98 |
-
|
99 |
-
|
100 |
-
def parse_detections(results):
|
101 |
-
detections = results.pandas().xyxy[0].to_dict()
|
102 |
-
boxes, colors, names, classes = [], [], [], []
|
103 |
-
for i in range(len(detections["xmin"])):
|
104 |
-
confidence = detections["confidence"][i]
|
105 |
-
if confidence < 0.2:
|
106 |
-
continue
|
107 |
-
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
|
108 |
-
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
|
109 |
-
name, category = detections["name"][i], int(detections["class"][i])
|
110 |
-
boxes.append((xmin, ymin, xmax, ymax))
|
111 |
-
colors.append(COLORS[category])
|
112 |
-
names.append(name)
|
113 |
-
classes.append(category)
|
114 |
-
return boxes, colors, names, classes
|
115 |
-
|
116 |
-
|
117 |
-
def draw_detections(boxes, colors, names, classes, img):
|
118 |
-
for box, color, name, cls in zip(boxes, colors, names, classes):
|
119 |
-
xmin, ymin, xmax, ymax = box
|
120 |
-
label = f"{cls}: {name}" # Combine class ID and name
|
121 |
-
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
|
122 |
-
cv2.putText(
|
123 |
-
img, label, (xmin, ymin - 5),
|
124 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
|
125 |
-
lineType=cv2.LINE_AA
|
126 |
-
)
|
127 |
-
return img
|
128 |
-
|
129 |
-
|
130 |
-
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
131 |
-
cam = EigenCAM(model, target_layers)
|
132 |
-
grayscale_cam = cam(tensor)[0, :, :]
|
133 |
-
img_float = np.float32(rgb_img) / 255
|
134 |
-
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
135 |
-
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
136 |
-
for x1, y1, x2, y2 in boxes:
|
137 |
-
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
138 |
-
renormalized_cam = scale_cam_image(renormalized_cam)
|
139 |
-
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
140 |
-
|
141 |
-
return cam_image, renormalized_cam_image
|
142 |
-
|
143 |
-
|
144 |
-
def deep_feature_factorization(features):
|
145 |
-
# Reshape the features for factorization (Flatten spatial dimensions)
|
146 |
-
n, c, h, w = features.shape
|
147 |
-
reshaped_features = features.view(c, -1).detach().cpu().numpy()
|
148 |
-
|
149 |
-
# Apply Non-Negative Matrix Factorization (NMF)
|
150 |
-
nmf = NMF(n_components=10, init='random', random_state=42, max_iter=300)
|
151 |
-
basis = nmf.fit_transform(reshaped_features)
|
152 |
-
coefficients = nmf.components_
|
153 |
-
|
154 |
-
# Reconstruct the feature map
|
155 |
-
reconstructed = np.dot(basis, coefficients).reshape((c, h, w))
|
156 |
-
|
157 |
-
return torch.tensor(reconstructed, dtype=torch.float32).unsqueeze(0)
|
158 |
-
|
159 |
-
|
160 |
-
def xai_yolov5(image):
|
161 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
162 |
-
model.eval()
|
163 |
-
model.cpu()
|
164 |
-
|
165 |
-
target_layers = [model.model.model.model[-2]]
|
166 |
-
|
167 |
-
# Run YOLO detection
|
168 |
-
results = model([image])
|
169 |
-
boxes, colors, names, classes = parse_detections(results)
|
170 |
-
detections_img = draw_detections(boxes, colors, names, classes, image.copy())
|
171 |
-
|
172 |
-
# Extract intermediate features
|
173 |
-
def hook(module, input, output):
|
174 |
-
return output
|
175 |
-
|
176 |
-
hook_handle = target_layers[0].register_forward_hook(hook)
|
177 |
-
with torch.no_grad():
|
178 |
-
model([image])
|
179 |
-
intermediate_features = hook_handle.remove()
|
180 |
-
|
181 |
-
# Apply Deep Feature Factorization
|
182 |
-
factored_features = deep_feature_factorization(intermediate_features)
|
183 |
-
|
184 |
-
# Prepare input tensor for Grad-CAM
|
185 |
-
img_float = np.float32(image) / 255
|
186 |
-
transform = transforms.ToTensor()
|
187 |
-
tensor = transform(img_float).unsqueeze(0)
|
188 |
-
|
189 |
-
# Grad-CAM visualization using factored features
|
190 |
-
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, factored_features, image, boxes)
|
191 |
-
|
192 |
-
# Combine results
|
193 |
-
final_image = np.hstack((image, detections_img, renormalized_cam_image))
|
194 |
-
caption = "Results using YOLOv5 with Deep Feature Factorization"
|
195 |
-
return Image.fromarray(final_image), caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|